메뉴 건너뛰기




Volumn 9, Issue 4, 2015, Pages 625-636

Online sparsifying transform learning -Part i: Algorithms

Author keywords

big data; denoising; dictionary learning; image representation; machine learning; online learning; Sparse representations; sparsifying transforms

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BIG DATA; IMAGE DENOISING; IMAGE RECONSTRUCTION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MEDICAL IMAGE PROCESSING; MEDICAL IMAGING; SIGNAL DENOISING; SIGNAL PROCESSING; SOCIAL NETWORKING (ONLINE);

EID: 84929299727     PISSN: 19324553     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTSP.2015.2417131     Document Type: Article
Times cited : (102)

References (57)
  • 1
    • 34249671661 scopus 로고    scopus 로고
    • Analysis versus synthesis in signal priors
    • M. Elad, P. Milanfar, and R. Rubinstein, Analysis versus synthesis in signal priors, Inverse Problems, vol. 23, no. 3, pp. 947-968, 2007.
    • (2007) Inverse Problems , vol.23 , Issue.3 , pp. 947-968
    • Elad, M.1    Milanfar, P.2    Rubinstein, R.3
  • 2
    • 80051633276 scopus 로고    scopus 로고
    • Cosparse analysis modeling-Uniqueness and algorithms
    • S. Nam, M. E. Davies, M. Elad, and R. Gribonval, Cosparse analysis modeling-Uniqueness and algorithms, in Proc. ICASSP, 2011, pp. 5804-5807.
    • (2011) Proc. ICASSP , pp. 5804-5807
    • Nam, S.1    Davies, M.E.2    Elad, M.3    Gribonval, R.4
  • 3
    • 80054689517 scopus 로고
    • Hadamard transform image coding
    • Jan
    • W. K. Pratt, J. Kane, and H. C. Andrews, Hadamard transform image coding, Proc. IEEE, vol. 57, no. 1, pp. 58-68, Jan. 1969.
    • (1969) Proc IEEE , vol.57 , Issue.1 , pp. 58-68
    • Pratt, W.K.1    Kane, J.2    Andrews, H.C.3
  • 4
    • 84873633867 scopus 로고    scopus 로고
    • Learning sparsifying transforms
    • May
    • S. Ravishankar and Y. Bresler, Learning sparsifying transforms, IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1072-1086, May 2013.
    • (2013) IEEE Trans. Signal Process , vol.61 , Issue.5 , pp. 1072-1086
    • Ravishankar, S.1    Bresler, Y.2
  • 5
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • Nov
    • M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006.
    • (2006) IEEE Trans. Signal Process , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 6
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Dec
    • M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, Dec. 2006.
    • (2006) IEEE Trans. Image Process , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 7
    • 84876249547 scopus 로고    scopus 로고
    • Constrained overcomplete analysis operator learning for cosparse signal modelling
    • Sep.
    • M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, Constrained overcomplete analysis operator learning for cosparse signal modelling, IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2341-2355, Sep. 2013.
    • (2013) IEEE Trans. Signal Process , vol.61 , Issue.9 , pp. 2341-2355
    • Yaghoobi, M.1    Nam, S.2    Gribonval, R.3    Davies, M.E.4
  • 8
    • 84897584301 scopus 로고    scopus 로고
    • Analysis K-SVD: A dictionarylearning algorithm for the analysis sparse model
    • Mar.
    • R. Rubinstein, T. Peleg, and M. Elad, Analysis K-SVD: A dictionarylearning algorithm for the analysis sparse model, IEEE Trans. Signal Processing, vol. 61, no. 3, pp. 661-677, Mar. 2013.
    • (2013) IEEE Trans. Signal Processing , vol.61 , Issue.3 , pp. 661-677
    • Rubinstein, R.1    Peleg, T.2    Elad, M.3
  • 10
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., vol. 51, no. 1, pp. 34-81, 2009.
    • (2009) SIAM Rev , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 11
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • Apr
    • B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput., vol. 24, no. 2, pp. 227-234, Apr. 1995.
    • (1995) SIAM J. Comput , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 13
    • 0027814133 scopus 로고
    • Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
    • Y. Pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, in Proc. Asilomar Conf. Signals, Syst., Comput., 1993, vol. 1, pp. 40-44.
    • (1993) Proc. Asilomar Conf. Signals, Syst., Comput , vol.1 , pp. 40-44
    • Pati, Y.1    Rezaiifar, R.2    Krishnaprasad, P.3
  • 14
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Dec
    • S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
    • (1993) IEEE Trans. Signal Process , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.G.1    Zhang, Z.2
  • 15
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • May
    • W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230-2249, May 2009.
    • (2009) IEEE Trans. Inf. Theory , vol.55 , Issue.5 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 16
    • 0032131292 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33-61, 1998.
    • (1998) SIAM J. Sci. Comput , vol.20 , Issue.1 , pp. 33-61
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 17
    • 0028805010 scopus 로고
    • Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm
    • I. F. Gorodnitsky, J. George, and B. D. Rao, Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm, Electrocephal. Clinical Neurophysiol., vol. 95, pp. 231-251, 1995.
    • (1995) Electrocephal. Clinical Neurophysiol , vol.95 , pp. 231-251
    • Gorodnitsky, I.F.1    George, J.2    Rao, B.D.3
  • 20
    • 34548724437 scopus 로고    scopus 로고
    • Exact reconstruction of sparse signals via nonconvex minimization
    • Oct
    • R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Process. Lett., vol. 14, no. 10, pp. 707-710, Oct. 2007.
    • (2007) IEEE Signal Process. Lett , vol.14 , Issue.10 , pp. 707-710
    • Chartrand, R.1
  • 21
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr
    • D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 22
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • Oct
    • J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242, Oct. 2004.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 23
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • Dec
    • E. Cands and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Cands, E.1    Tao, T.2
  • 24
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
    • D. L. Donoho, For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution, Commun. Pure Appl. Math., vol. 59, pp. 797-829, 2004.
    • (2004) Commun. Pure Appl. Math , vol.59 , pp. 797-829
    • Donoho, D.L.1
  • 26
    • 84874754123 scopus 로고    scopus 로고
    • K-SVD dictionary-learning for analysis sparse models
    • R. Rubinstein and M. Elad, K-SVD dictionary-learning for analysis sparse models, in Proc. SPARS11, Jun. 2011, p. 73.
    • (2011) Proc. SPARS11, Jun , pp. 73
    • Rubinstein, R.1    Elad, M.2
  • 27
    • 1242352408 scopus 로고    scopus 로고
    • An algorithm for total variation minimization and applications
    • A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., vol. 20, no. 1-2, pp. 89-97, 2004.
    • (2004) J. Math. Imaging Vis , vol.20 , Issue.1-2 , pp. 89-97
    • Chambolle, A.1
  • 30
    • 0003306887 scopus 로고    scopus 로고
    • Curvelets-A surprisingly effective nonadaptive representation for objects with edges
    • Nashville, TN, USA: Vanderbilt Univ. Press
    • E. J. Cands and D. L. Donoho, Curvelets-A surprisingly effective nonadaptive representation for objects with edges, in Curves and Surfaces. Nashville, TN, USA: Vanderbilt Univ. Press, 1999, pp. 105-120.
    • (1999) Curves and Surfaces , pp. 105-120
    • Cands, E.J.1    Donoho, D.L.2
  • 31
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol. 381, no. 6583, pp. 607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 33
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • Jan
    • J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Image Process., vol. 17, no. 1, pp. 53-69, Jan. 2008.
    • (2008) IEEE Trans. Image Process , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 34
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • Jun
    • M. Yaghoobi, T. Blumensath, and M. Davies, Dictionary learning for sparse approximations with the majorization method, IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2178-2191, Jun. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.6 , pp. 2178-2191
    • Yaghoobi, M.1    Blumensath, T.2    Davies, M.3
  • 35
    • 79955633431 scopus 로고    scopus 로고
    • MR image reconstruction from highly undersampled k-space data by dictionary learning
    • May
    • S. Ravishankar and Y. Bresler, MR image reconstruction from highly undersampled k-space data by dictionary learning, IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1028-1041, May 2011.
    • (2011) IEEE Trans. Med. Imag , vol.30 , Issue.5 , pp. 1028-1041
    • Ravishankar, S.1    Bresler, Y.2
  • 36
    • 77949403269 scopus 로고    scopus 로고
    • Recursive least squares dictionary learning algorithm
    • Apr.
    • K. Skretting and K. Engan, Recursive least squares dictionary learning algorithm, IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2121-2130, Apr. 2010.
    • (2010) IEEE Trans. Signal Process , vol.58 , Issue.4 , pp. 2121-2130
    • Skretting, K.1    Engan, K.2
  • 40
    • 84884838010 scopus 로고    scopus 로고
    • Learning doubly sparse transforms for images
    • Dec.
    • S. Ravishankar and Y. Bresler, Learning doubly sparse transforms for images, IEEE Trans. Image Process., vol. 22, no. 12, pp. 4598-4612, Dec. 2013.
    • (2013) IEEE Trans. Image Process , vol.22 , Issue.12 , pp. 4598-4612
    • Ravishankar, S.1    Bresler, Y.2
  • 41
  • 42
    • 85018100784 scopus 로고    scopus 로고
    • Structured overcomplete sparsifying transform learning with convergence guarantees and applications
    • B. Wen, S. Ravishankar, and Y. Bresler, Structured overcomplete sparsifying transform learning with convergence guarantees and applications, Int. J. Comput. Vis. pp. 1-31, 2014.
    • (2014) Int. J. Comput. Vis. , pp. 1-31
    • Wen, B.1    Ravishankar, S.2    Bresler, Y.3
  • 43
  • 44
    • 84897391752 scopus 로고    scopus 로고
    • Model-based iterative tomographic reconstruction with adaptive sparsifying transforms
    • L. Pfister and Y. Bresler, Model-based iterative tomographic reconstruction with adaptive sparsifying transforms, in Proc. SPIE Int. Symp. Electron. Imaging: Comput. Imag. XII, 2014, vol. 9020, pp. 90 200H-1-90 200H-11.
    • (2014) Proc. SPIE Int. Symp. Electron. Imaging: Comput. Imag. XII , vol.9020 , pp. 90200H1-90200H11
    • Pfister, L.1    Bresler, Y.2
  • 45
    • 84929327416 scopus 로고    scopus 로고
    • Online sparsifying transform learning-Part II: Convergence analysis
    • Jun.
    • S. Ravishankar and Y. Bresler, Online sparsifying transform learning-Part II: Convergence analysis, IEEE J. Sel. Topics Signal Process., vol. 9, no. 2, pp. XXX-XXX, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Signal Process , vol.9 , Issue.2 , pp. 30-30
    • Ravishankar, S.1    Bresler, Y.2
  • 46
    • 84927591259 scopus 로고    scopus 로고
    • Sparsifying transform learning with efficient optimal updates and convergence guarantees
    • to be published
    • S. Ravishankar and Y. Bresler, sparsifying transform learning with efficient optimal updates and convergence guarantees, IEEE Trans. Signal Process., 2015, to be published.
    • (2015) IEEE Trans. Signal Process
    • Ravishankar, S.1    Bresler, Y.2
  • 47
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, J. Mach. Learn. Res., vol. 11, pp. 19-60, 2010.
    • J. Mach. Learn. Res , vol.11 , Issue.2010 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 49
  • 50
    • 84875886368 scopus 로고    scopus 로고
    • Online semi-supervised discriminative dictionary learning for sparse representation
    • G. Zhang, Z. Jiang, and L. S. Davis, Online semi-supervised discriminative dictionary learning for sparse representation, in Proc. Comput. Vis. ACCV12, 2013, pp. 259-273.
    • (2013) Proc. Comput. Vis. ACCV12 , pp. 259-273
    • Zhang, G.1    Jiang, Z.2    Davis, L.S.3
  • 51
    • 84906572582 scopus 로고    scopus 로고
    • Ik-svd: Dictionary learning for spatial big data via incremental atom update
    • L. Wang, K. Lu, P. Liu, R. Ranjan, and L. Chen, Ik-svd: Dictionary learning for spatial big data via incremental atom update, Comput. Sci. Eng., vol. 16, no. 4, pp. 41-52, 2014.
    • (2014) Comput. Sci. Eng , vol.16 , Issue.4 , pp. 41-52
    • Wang, L.1    Lu, K.2    Liu, P.3    Ranjan, R.4    Chen, L.5
  • 53
    • 84887331069 scopus 로고    scopus 로고
    • On the efficient update of the singular value decomposition
    • P. Stange, On the efficient update of the singular value decomposition, Proc. Appl. Math. Mech., vol. 8, no. 1, pp. 10 827-10 828, 2008.
    • (2008) Proc. Appl. Math. Mech , vol.8 , Issue.1 , pp. 10827-10828
    • Stange, P.1
  • 55
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol. 81, no. 3, pp. 425-455, 1994.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 56
    • 84927655015 scopus 로고    scopus 로고
    • accessed 2014
    • M. Elad, Michael Elad personal page, [Online]. Available: http:/ /www.cs.technion.ac.il/~elad/Various/KSVD-Matlab-ToolBox.zip, accessed 2014
    • Michael Elad Personal Page
    • Elad, M.1
  • 57
    • 0012057427 scopus 로고    scopus 로고
    • accessed Jul 2014
    • The USC-SIPI image database, [Online]. Available: http://sipi.usc. edu/database/database.php?volume=misc, accessed Jul. 2014
    • The USC-SIPI Image Database


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.