메뉴 건너뛰기




Volumn 39, Issue 12, 2015, Pages 3398-3409

A hybrid fuzzy K-harmonic means clustering algorithm

Author keywords

Data clustering; Fuzzy clustering; K harmonic means; K means; Noise sensitivity

Indexed keywords

FUZZY CLUSTERING; HARMONIC ANALYSIS;

EID: 84929289460     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2014.11.041     Document Type: Article
Times cited : (35)

References (36)
  • 1
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey B.J., Dueck D. Clustering by passing messages between data points. Science 2007, 315:972-976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 2
    • 77957887314 scopus 로고    scopus 로고
    • Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances
    • Carvalho F.D., Tenorio C.P. Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances. Fuzzy Sets Syst. 2010, 161:2978-2999.
    • (2010) Fuzzy Sets Syst. , vol.161 , pp. 2978-2999
    • Carvalho, F.D.1    Tenorio, C.P.2
  • 3
    • 84879780191 scopus 로고    scopus 로고
    • Fuzzy partition based soft subspace clustering and its applications in high dimensional data
    • Wang J., Wang S., Chung F., Deng Z. Fuzzy partition based soft subspace clustering and its applications in high dimensional data. Inform. Sci. 2013, 246:133-154.
    • (2013) Inform. Sci. , vol.246 , pp. 133-154
    • Wang, J.1    Wang, S.2    Chung, F.3    Deng, Z.4
  • 4
    • 84872492036 scopus 로고    scopus 로고
    • A novel fuzzy clustering algorithm with between-cluster information for categorical data
    • Bai L., Liang J., Dang C., Cao F. A novel fuzzy clustering algorithm with between-cluster information for categorical data. Fuzzy Sets Syst. 2013, 215:55-73.
    • (2013) Fuzzy Sets Syst. , vol.215 , pp. 55-73
    • Bai, L.1    Liang, J.2    Dang, C.3    Cao, F.4
  • 5
    • 33751255087 scopus 로고    scopus 로고
    • Evaluation of clustering algorithms for protein-protein interaction networks
    • Brohee S., Helden V.H. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinf. 2006, 7. Article no. 488.
    • (2006) BMC Bioinf. , vol.7
    • Brohee, S.1    Helden, V.H.2
  • 6
    • 59649123088 scopus 로고    scopus 로고
    • Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition
    • Georgiou D.N., Karakasidis T.E., Nieto J.J., Torres A. Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition. J. Theor. Bio. 2009, 257:17-26.
    • (2009) J. Theor. Bio. , vol.257 , pp. 17-26
    • Georgiou, D.N.1    Karakasidis, T.E.2    Nieto, J.J.3    Torres, A.4
  • 7
    • 78249241210 scopus 로고    scopus 로고
    • Comparison of classification and clustering methods in spatial rainfall pattern recognition at Northern Iran
    • Golian S., Saghafian B., Sheshangosht S., Ghalkhani H. Comparison of classification and clustering methods in spatial rainfall pattern recognition at Northern Iran. Theor. Appl. Clim. 2010, 102:319-329.
    • (2010) Theor. Appl. Clim. , vol.102 , pp. 319-329
    • Golian, S.1    Saghafian, B.2    Sheshangosht, S.3    Ghalkhani, H.4
  • 8
    • 77957020072 scopus 로고    scopus 로고
    • Enabling scalable spectral clustering for image segmentation
    • Tung F., Wong A., Clausi D.A. Enabling scalable spectral clustering for image segmentation. Pattern Recognit. 2010, 43:4069-4076.
    • (2010) Pattern Recognit. , vol.43 , pp. 4069-4076
    • Tung, F.1    Wong, A.2    Clausi, D.A.3
  • 9
    • 33947105982 scopus 로고    scopus 로고
    • Image segmentation by fuzzy c-means clustering algorithm with a novel penalty term
    • Yang Y., Huang S.Y. Image segmentation by fuzzy c-means clustering algorithm with a novel penalty term. Comput. Inf. 2007, 26:17-31.
    • (2007) Comput. Inf. , vol.26 , pp. 17-31
    • Yang, Y.1    Huang, S.Y.2
  • 10
    • 84869494160 scopus 로고    scopus 로고
    • Kernel generalized fuzzy c-means clustering with spatial information for image segmentation
    • Zhao F., Cheng J., Liu H. Kernel generalized fuzzy c-means clustering with spatial information for image segmentation. Digital Signal Process. 2013, 23:184-199.
    • (2013) Digital Signal Process. , vol.23 , pp. 184-199
    • Zhao, F.1    Cheng, J.2    Liu, H.3
  • 11
    • 84872486731 scopus 로고    scopus 로고
    • Fuzzy semi-supervised co-clustering for text documents
    • Yan Y., Chen L., Tjhi W.C. Fuzzy semi-supervised co-clustering for text documents. Fuzzy Sets Syst. 2013, 215:74-89.
    • (2013) Fuzzy Sets Syst. , vol.215 , pp. 74-89
    • Yan, Y.1    Chen, L.2    Tjhi, W.C.3
  • 13
    • 84865850542 scopus 로고    scopus 로고
    • A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains
    • Dogan B., Korurek M. A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains. Appl. Soft Comput. 2012, 12:3442-3451.
    • (2012) Appl. Soft Comput. , vol.12 , pp. 3442-3451
    • Dogan, B.1    Korurek, M.2
  • 15
    • 0037530529 scopus 로고    scopus 로고
    • K-harmonic means - a data clustering algorithm, Technical Report HPL-1999-124
    • Hewlett-Packard Laboratories.
    • B. Zhang, M. Hsu, U. Dayal, K-harmonic means - a data clustering algorithm, Technical Report HPL-1999-124, Hewlett-Packard Laboratories, 1999.
    • (1999)
    • Zhang, B.1    Hsu, M.2    Dayal, U.3
  • 16
    • 84945263084 scopus 로고    scopus 로고
    • K-harmonic means - a spatial clustering algorithm with boosting
    • Springer, International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining, TSDM2000
    • Zhang B., Hsu M., Dayal U. K-harmonic means - a spatial clustering algorithm with boosting. LNAI 2001, 31-45. Springer.
    • (2001) LNAI , pp. 31-45
    • Zhang, B.1    Hsu, M.2    Dayal, U.3
  • 17
    • 0012981871 scopus 로고    scopus 로고
    • Generalized K-harmonic means - boosting in unsupervised learning
    • Technical Report HPL-2000-137, Hewlett-Packard Laboratories.
    • B. Zhang, Generalized K-harmonic means - boosting in unsupervised learning, Technical Report HPL-2000-137, Hewlett-Packard Laboratories, 2000.
    • (2000)
    • Zhang, B.1
  • 19
    • 64049093707 scopus 로고    scopus 로고
    • An efficient hybrid data clustering method based on K-harmonic means and particle swarm optimization
    • Yang F.Q., Sun T.L., Zhang C.H. An efficient hybrid data clustering method based on K-harmonic means and particle swarm optimization. Expert Syst. Appl. 2009, 36:9847-9852.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9847-9852
    • Yang, F.Q.1    Sun, T.L.2    Zhang, C.H.3
  • 21
    • 77957852859 scopus 로고    scopus 로고
    • Ant clustering algorithm with K-harmonic means clustering
    • Jiang H., Yi S.H., Li J., Yang F.Q., Hu X. Ant clustering algorithm with K-harmonic means clustering. Expert Syst. Appl. 2010, 37:8679-8684.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 8679-8684
    • Jiang, H.1    Yi, S.H.2    Li, J.3    Yang, F.Q.4    Hu, X.5
  • 22
    • 33846661354 scopus 로고    scopus 로고
    • K-harmonic means data clustering with simulated annealing heuristic
    • Güngör Z., Ünler A. K-harmonic means data clustering with simulated annealing heuristic. Appl. Math. Comput. 2007, 184:199-209.
    • (2007) Appl. Math. Comput. , vol.184 , pp. 199-209
    • Güngör, Z.1    Ünler, A.2
  • 23
    • 39349118272 scopus 로고    scopus 로고
    • K-harmonic means data clustering with tabu-search method
    • Güngör Z., Ünler A. K-harmonic means data clustering with tabu-search method. Appl. Math. Model. 2008, 32:1115-1125.
    • (2008) Appl. Math. Model. , vol.32 , pp. 1115-1125
    • Güngör, Z.1    Ünler, A.2
  • 24
    • 79953684858 scopus 로고    scopus 로고
    • A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering
    • Yin M., Hu Y., Yang F., Li X., Gu W. A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering. Expert Syst. Appl. 2011, 38:9319-9324.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 9319-9324
    • Yin, M.1    Hu, Y.2    Yang, F.3    Li, X.4    Gu, W.5
  • 25
    • 84887409450 scopus 로고    scopus 로고
    • Candidate groups search for K-harmonic means data clustering
    • Hung C.H., Chiou H.M., Yang W.N. Candidate groups search for K-harmonic means data clustering. Appl. Math. Model. 2013, 37:10123-10128.
    • (2013) Appl. Math. Model. , vol.37 , pp. 10123-10128
    • Hung, C.H.1    Chiou, H.M.2    Yang, W.N.3
  • 29
    • 26844532803 scopus 로고    scopus 로고
    • A possibilistic fuzzy c-means clustering algorithm
    • Pal N.R., Pal K., Bezdek J.C. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 2005, 13:517-530.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , pp. 517-530
    • Pal, N.R.1    Pal, K.2    Bezdek, J.C.3
  • 30
    • 79957705178 scopus 로고    scopus 로고
    • Mixed fuzzy inter-cluster separation clustering algorithm
    • Wu X.H., Wu B., Sun J., Zhao J.W. Mixed fuzzy inter-cluster separation clustering algorithm. Appl. Math. Model. 2011, 35:4790-4795.
    • (2011) Appl. Math. Model. , vol.35 , pp. 4790-4795
    • Wu, X.H.1    Wu, B.2    Sun, J.3    Zhao, J.W.4
  • 31
    • 1942532748 scopus 로고    scopus 로고
    • Improved possibilistic c-means clustering algorithms
    • Zhang J.S., Leung Y.W. Improved possibilistic c-means clustering algorithms. IEEE Trans. Fuzzy Syst. 2004, 12:209-217.
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , pp. 209-217
    • Zhang, J.S.1    Leung, Y.W.2
  • 32
    • 27344449089 scopus 로고    scopus 로고
    • Unsupervised possibilistic clustering
    • Yang M.S., Wu K.L. Unsupervised possibilistic clustering. Pattern Recognit. 2006, 39:5-21.
    • (2006) Pattern Recognit. , vol.39 , pp. 5-21
    • Yang, M.S.1    Wu, K.L.2
  • 34
    • 4344593829 scopus 로고    scopus 로고
    • An extension to possibilistic fuzzy cluster analysis
    • Timm H., Borgelt C., Doring C., Kruse R. An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets Syst. 2004, 147:3-16.
    • (2004) Fuzzy Sets Syst. , vol.147 , pp. 3-16
    • Timm, H.1    Borgelt, C.2    Doring, C.3    Kruse, R.4
  • 35
    • 84873160774 scopus 로고    scopus 로고
    • Fuzzy linear discriminant analysis-guided maximum entropy fuzzy clustering algorithm
    • Zhi X., Fan J., Zhao F. Fuzzy linear discriminant analysis-guided maximum entropy fuzzy clustering algorithm. Pattern Recognit. 2013, 46:1604-1615.
    • (2013) Pattern Recognit. , vol.46 , pp. 1604-1615
    • Zhi, X.1    Fan, J.2    Zhao, F.3
  • 36
    • 84880252377 scopus 로고    scopus 로고
    • Classification of apple using near infrared spectroscopy based on fuzzy discriminant analysis
    • Wu X.H., Wan X.X., Wu B., Wu F. Classification of apple using near infrared spectroscopy based on fuzzy discriminant analysis. Adv. Mater. Res. 2013, 710:524-528.
    • (2013) Adv. Mater. Res. , vol.710 , pp. 524-528
    • Wu, X.H.1    Wan, X.X.2    Wu, B.3    Wu, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.