메뉴 건너뛰기




Volumn 215, Issue , 2013, Pages 55-73

A novel fuzzy clustering algorithm with between-cluster information for categorical data

Author keywords

Categorical data; Fuzzy clustering; Optimization objective function; The fuzzy k modes algorithm

Indexed keywords

CATEGORICAL DATA; CLUSTER PROTOTYPE; FUZZY K-MODES ALGORITHM; LOCAL OPTIMAL SOLUTION; MEMBERSHIP MATRIX; OBJECTIVE FUNCTIONS; OPTIMIZATION FRAMEWORK; OPTIMIZATION OBJECTIVE FUNCTION; REAL DATA SETS;

EID: 84872492036     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2012.06.005     Document Type: Article
Times cited : (37)

References (36)
  • 4
    • 79959359175 scopus 로고    scopus 로고
    • A novel attribute weighting algorithm for clustering high-dimensional categorical data
    • L. Bai, J.Y. Liang, C.Y. Dang, and F.Y. Cao A novel attribute weighting algorithm for clustering high-dimensional categorical data Pattern Recogn. 44 12 2011 2843 2861
    • (2011) Pattern Recogn. , vol.44 , Issue.12 , pp. 2843-2861
    • Bai, L.1    Liang, J.Y.2    Dang, C.Y.3    Cao, F.Y.4
  • 5
    • 79957516063 scopus 로고    scopus 로고
    • An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data
    • L. Bai, J.Y. Liang, and C.Y. Dang An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data Knowl-Based Syst. 24 6 2011 785 795
    • (2011) Knowl-Based Syst. , vol.24 , Issue.6 , pp. 785-795
    • Bai, L.1    Liang, J.Y.2    Dang, C.Y.3
  • 6
    • 0038494682 scopus 로고    scopus 로고
    • Coolcat: An entropy-based algorithm for categorical clustering
    • D. Barbara, Y. Li, J. Couto, Coolcat: an entropy-based algorithm for categorical clustering, in: Information and Knowledge Management, 2002, pp. 582-589.
    • (2002) Information and Knowledge Management , pp. 582-589
    • Barbara, D.1    Li, Y.2    Couto, J.3
  • 7
    • 0016951409 scopus 로고
    • A physical interpretation of fuzzy ISODATA
    • J.C. Bezdek A physical interpretation of fuzzy ISODATA IEEE Trans. Syst. Man Cybern. 6 5 1976 387 390
    • (1976) IEEE Trans. Syst. Man Cybern. , vol.6 , Issue.5 , pp. 387-390
    • Bezdek, J.C.1
  • 8
    • 77957770084 scopus 로고    scopus 로고
    • A framework for clustering categorical time-evolving data
    • F.Y. Cao, J.Y. Liang, and L. Bai A framework for clustering categorical time-evolving data IEEE Trans. Fuzzy Syst. 18 5 2010 872 882
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.5 , pp. 872-882
    • Cao, F.Y.1    Liang, J.Y.2    Bai, L.3
  • 9
  • 10
    • 35648929355 scopus 로고    scopus 로고
    • Top-down parameter-free clustering of high-dimensional categorical data
    • E. Cesario, G. Manco, and R. Ortale Top-down parameter-free clustering of high-dimensional categorical data IEEE Trans. Knowl. Data Eng. 19 12 2007 1607 1624
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.12 , pp. 1607-1624
    • Cesario, E.1    Manco, G.2    Ortale, R.3
  • 12
    • 52949121468 scopus 로고    scopus 로고
    • On data labeling for clustering categorical data
    • H.L. Chen, K.T. Chuang, and M.S. Chen On data labeling for clustering categorical data IEEE Trans. Knowl. Data Eng. 20 11 2008 1458 1472
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.11 , pp. 1458-1472
    • Chen, H.L.1    Chuang, K.T.2    Chen, M.S.3
  • 13
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D.H. Fisher Knowledge acquisition via incremental conceptual clustering Mach. Learn. 2 2 1987 139 172
    • (1987) Mach. Learn. , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.H.1
  • 14
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • A. Frank, A. Asuncion, UCI Machine Learning Repository [ http://archive.ics.uci.edu/ml ], Irvine, CA: University of California, School of Information and Computer Science, 2010.
    • (2010) UCI Machine Learning Repository [ ]
    • Frank, A.1    Asuncion, A.2
  • 16
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • K.C. Gowda, and E. Diday Symbolic clustering using a new dissimilarity measure Pattern Recogn. 24 6 1991 567 578
    • (1991) Pattern Recogn. , vol.24 , Issue.6 , pp. 567-578
    • Gowda, K.C.1    Diday, E.2
  • 17
    • 72149122625 scopus 로고    scopus 로고
    • Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study
    • D. Graves, and W. Pedrycz Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study Fuzzy Set Syst. 161 4 2010 522 543
    • (2010) Fuzzy Set Syst. , vol.161 , Issue.4 , pp. 522-543
    • Graves, D.1    Pedrycz, W.2
  • 20
    • 0026925678 scopus 로고
    • A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
    • L.O. Hall, A.M. Bensaid, and L.P. Clarke A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain IEEE Trans. Neural Networ. 3 5 1992 672 682
    • (1992) IEEE Trans. Neural Networ. , vol.3 , Issue.5 , pp. 672-682
    • Hall, L.O.1    Bensaid, A.M.2    Clarke, L.P.3
  • 22
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z.X. Huang Extensions to the k-means algorithm for clustering large data sets with categorical values Data Min. Knowl. Disc. 2 3 1998 283 304
    • (1998) Data Min. Knowl. Disc. , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.X.1
  • 23
    • 0032595161 scopus 로고    scopus 로고
    • A fuzzy k-modes algorithm for clustering categorical data
    • Z.X. Huang, and M.K. Ng A fuzzy k-modes algorithm for clustering categorical data IEEE Trans. Fuzzy Syst. 7 4 1999 446 452
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.4 , pp. 446-452
    • Huang, Z.X.1    Ng, M.K.2
  • 26
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • N.R. Pal, and J.C. Bezdek On cluster validity for the fuzzy c-means model IEEE Trans. Fuzzy Syst. 3 3 1995 370 379
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 27
    • 46849106744 scopus 로고    scopus 로고
    • Consistency measure, inclusion degree and fuzzy measure in decision tables
    • Y.H. Qian, J.Y. Liang, and C.Y. Dang Consistency measure, inclusion degree and fuzzy measure in decision tables Fuzzy Set Syst. 159 18 2008 2353 2377
    • (2008) Fuzzy Set Syst. , vol.159 , Issue.18 , pp. 2353-2377
    • Qian, Y.H.1    Liang, J.Y.2    Dang, C.Y.3
  • 28
    • 70449533088 scopus 로고    scopus 로고
    • The fuzzy c-means algorithm with fuzzy p-mode prototypes for clustering objects having mixed features
    • M. Lee, and W. Pedrycz The fuzzy c-means algorithm with fuzzy p-mode prototypes for clustering objects having mixed features Fuzzy Set Syst. 160 24 2009 3590 3600
    • (2009) Fuzzy Set Syst. , vol.160 , Issue.24 , pp. 3590-3600
    • Lee, M.1    Pedrycz, W.2
  • 29
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley, University of California Press
    • J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, vol. 1, 1967, pp. 281-297.
    • (1967) Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 30
    • 34547434740 scopus 로고    scopus 로고
    • On fuzzy cluster validity indices
    • W.N. Wang, and Y.J. Zhang On fuzzy cluster validity indices Fuzzy Set Syst. 158 19 2007 2095 2117
    • (2007) Fuzzy Set Syst. , vol.158 , Issue.19 , pp. 2095-2117
    • Wang, W.N.1    Zhang, Y.J.2
  • 32
    • 14644429109 scopus 로고    scopus 로고
    • A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality test
    • K.L. Wu, J. Yu, and M.S. Yang A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality test Pattern Recogn. Lett. 26 5 2005 639 652
    • (2005) Pattern Recogn. Lett. , vol.26 , Issue.5 , pp. 639-652
    • Wu, K.L.1    Yu, J.2    Yang, M.S.3
  • 33
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Y.M. Yang An evaluation of statistical approaches to text categorization J. Inform. Retrieval 1 1-2 1999 67 88
    • (1999) J. Inform. Retrieval , vol.1 , Issue.12 , pp. 67-88
    • Yang, Y.M.1
  • 34
    • 14644432442 scopus 로고    scopus 로고
    • Optimality test for generalized FCM and its application to parameter selection
    • J. Yu, and M.S. Yang Optimality test for generalized FCM and its application to parameter selection IEEE Trans. Fuzzy Syst. 13 1 2005 164 176
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.1 , pp. 164-176
    • Yu, J.1    Yang, M.S.2
  • 36
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L.A. Zadeh Fuzzy sets Inform. Control 8 3 1965 338 353
    • (1965) Inform. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.