메뉴 건너뛰기




Volumn 184, Issue 2, 2007, Pages 199-209

K-harmonic means data clustering with simulated annealing heuristic

Author keywords

Clustering; Fuzzy K means; K harmonic means; K means; Simulated annealing

Indexed keywords

ALGORITHMS; DATA MINING; DATA REDUCTION; DATABASE SYSTEMS; HEURISTIC METHODS; PROBLEM SOLVING; SIMULATED ANNEALING;

EID: 33846661354     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2006.05.166     Document Type: Article
Times cited : (106)

References (34)
  • 1
    • 0029478402 scopus 로고
    • A Tabu search approach to the clustering problem
    • Al-Sultan K.H. A Tabu search approach to the clustering problem. Pattern Recognit. 28 (1995) 1443-1451
    • (1995) Pattern Recognit. , vol.28 , pp. 1443-1451
    • Al-Sultan, K.H.1
  • 2
    • 0031353193 scopus 로고    scopus 로고
    • A Tabu search-based algorithm for the fuzzy clustering problem
    • Al-Sultan K.S., and Fedjki A.C. A Tabu search-based algorithm for the fuzzy clustering problem. Pattern Recognit. 30/12 (1997) 2023-2030
    • (1997) Pattern Recognit. , vol.30-12 , pp. 2023-2030
    • Al-Sultan, K.S.1    Fedjki, A.C.2
  • 4
    • 33846709480 scopus 로고    scopus 로고
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases. Available from: .
  • 5
    • 0002550769 scopus 로고    scopus 로고
    • Refining initial points for K-means clustering
    • Morgan Kaufman, San Francisco, CA
    • Bradley P.S., and Fayyad U.M. Refining initial points for K-means clustering. Proc. 15th Int. Conf. on Machine Learning (1998), Morgan Kaufman, San Francisco, CA 91-99
    • (1998) Proc. 15th Int. Conf. on Machine Learning , pp. 91-99
    • Bradley, P.S.1    Fayyad, U.M.2
  • 6
    • 0037877983 scopus 로고    scopus 로고
    • A greedy randomized search procedure applied to the clustering problem as an initialization process using K-means as a local search procedure
    • Cano J.R., Cordon O., Herrera F., and Sanchez L. A greedy randomized search procedure applied to the clustering problem as an initialization process using K-means as a local search procedure. J. Intell. Fuzzy Syst. 12 3-4 (2002) 235-242
    • (2002) J. Intell. Fuzzy Syst. , vol.12 , Issue.3-4 , pp. 235-242
    • Cano, J.R.1    Cordon, O.2    Herrera, F.3    Sanchez, L.4
  • 7
    • 0037594975 scopus 로고    scopus 로고
    • A clustering algorithm using Tabu search approach with simulated annealing for vector quantization
    • Chu S., and Roddick J. A clustering algorithm using Tabu search approach with simulated annealing for vector quantization. Chin. J. Electron. 12 3 (2003) 349-353
    • (2003) Chin. J. Electron. , vol.12 , Issue.3 , pp. 349-353
    • Chu, S.1    Roddick, J.2
  • 8
    • 0030703347 scopus 로고    scopus 로고
    • M. Delgado, A. Skarmeta, H. Barbera, A Tabu search approach to the fuzzy clustering problem, in: Proc. of the Sixth IEEE Int. Conf. on Fuzzy Systems, Barcelona, 1997.
  • 9
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cyber. 3 (1973) 32-57
    • (1973) J. Cyber. , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 10
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
    • Forgy E.W. Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics 21 3 (1965) 768-769
    • (1965) Biometrics , vol.21 , Issue.3 , pp. 768-769
    • Forgy, E.W.1
  • 11
    • 0032140838 scopus 로고    scopus 로고
    • Tabu search algorithm for codebook generation in vector quantization
    • Frnti P., Kivijrvi J., and Nevalainen O. Tabu search algorithm for codebook generation in vector quantization. Pattern Recognit. 31 8 (1998) 1139-1148
    • (1998) Pattern Recognit. , vol.31 , Issue.8 , pp. 1139-1148
    • Frnti, P.1    Kivijrvi, J.2    Nevalainen, O.3
  • 12
    • 0034345982 scopus 로고    scopus 로고
    • Randomised local search algorithm for the clustering problem
    • Frnti P., and Kivijarvi J. Randomised local search algorithm for the clustering problem. Pattern Anal. Appl. 3 (2000) 358-369
    • (2000) Pattern Anal. Appl. , vol.3 , pp. 358-369
    • Frnti, P.1    Kivijarvi, J.2
  • 15
    • 33846679324 scopus 로고    scopus 로고
    • Y. Guan, A.A. Ghorbani, N. Belace, K-Means+: An autonomous clustering algorithm, Technical Report (TR04-164), UNB Faculty of Computer Science, 2004, Canada.
  • 16
    • 0038156173 scopus 로고    scopus 로고
    • G. Hammerly, C. Elkan, Alternatives to the k-means algorithm that find better clusterings, in: Proc. of the 11th Int. Conf. on Information and Knowledge Management, 2002, pp. 600-607.
  • 17
    • 0034819175 scopus 로고    scopus 로고
    • J-means: A new local search heuristic for minimum sum-of-squares clustering
    • Hansen P., and Mladenovic N. J-means: A new local search heuristic for minimum sum-of-squares clustering. Pattern Recognit. 34 (2002) 405-413
    • (2002) Pattern Recognit. , vol.34 , pp. 405-413
    • Hansen, P.1    Mladenovic, N.2
  • 18
    • 0035392413 scopus 로고    scopus 로고
    • Vector quantization based on genetic simulated annealing
    • Huang C.H., Pan J.S., Lu Z.H., Sun S.H., and Hang H.M. Vector quantization based on genetic simulated annealing. Signal Process. 81 (2001) 1513-1523
    • (2001) Signal Process. , vol.81 , pp. 1513-1523
    • Huang, C.H.1    Pan, J.S.2    Lu, Z.H.3    Sun, S.H.4    Hang, H.M.5
  • 20
    • 84942579055 scopus 로고    scopus 로고
    • P.M. Kanade, L.O. Hall, Fuzzy Ants as a Clustering Concept, in: Proc. of 22nd Int. Conf. of the North American Fuzzy Information Processing Society (NAFIPS), 2003, pp. 227-232.
  • 21
    • 23844528211 scopus 로고    scopus 로고
    • Cluster center initialization algorithm for K-means clustering
    • Khan S.S., and Ahmad A. Cluster center initialization algorithm for K-means clustering. Pattern Recognit. Lett. 25 (2004) 1293-1302
    • (2004) Pattern Recognit. Lett. , vol.25 , pp. 1293-1302
    • Khan, S.S.1    Ahmad, A.2
  • 22
  • 23
    • 0035336869 scopus 로고    scopus 로고
    • Stochastic K-means algorithm for vector quantization
    • Kövesi B., Boucher J.M., and Saoudi S. Stochastic K-means algorithm for vector quantization. Pattern Recognit. Lett. 22 (2001) 603-610
    • (2001) Pattern Recognit. Lett. , vol.22 , pp. 603-610
    • Kövesi, B.1    Boucher, J.M.2    Saoudi, S.3
  • 25
    • 0034815902 scopus 로고    scopus 로고
    • The enhanced LBG algorithm
    • Patane G., and Russo M. The enhanced LBG algorithm. Neural Networks 14/9 (2001) 1219-1237
    • (2001) Neural Networks , vol.14-9 , pp. 1219-1237
    • Patane, G.1    Russo, M.2
  • 26
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending K-means with efficient estimation of the number of clusters
    • Morgan Kaufman, San Francisco, CA
    • Pelleg D., and Moore A. X-means: Extending K-means with efficient estimation of the number of clusters. Proc. of the 17th Int. Conf. on Machine Learning (2000), Morgan Kaufman, San Francisco, CA 727-734
    • (2000) Proc. of the 17th Int. Conf. on Machine Learning , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 27
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the K-Means algorithm
    • Pena J.M., Lozano J.A., and Larranaga P. An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognit. Lett. 20 (1999) 1027-1040
    • (1999) Pattern Recognit. Lett. , vol.20 , pp. 1027-1040
    • Pena, J.M.1    Lozano, J.A.2    Larranaga, P.3
  • 28
    • 0000918312 scopus 로고
    • A Monte Carlo method for the approximation solution of certain types of constrained optimization problems
    • Pincus M. A Monte Carlo method for the approximation solution of certain types of constrained optimization problems. Operations Res. 18 (1970) 1225-1228
    • (1970) Operations Res. , vol.18 , pp. 1225-1228
    • Pincus, M.1
  • 29
    • 13644265129 scopus 로고    scopus 로고
    • Initialization insensitive LVQ algorithm based on cost-function adaptation
    • Qin A.K., and Suganthan P.N. Initialization insensitive LVQ algorithm based on cost-function adaptation. Pattern Recognit. 38 (2005) 773-776
    • (2005) Pattern Recognit. , vol.38 , pp. 773-776
    • Qin, A.K.1    Suganthan, P.N.2
  • 30
    • 0033882604 scopus 로고    scopus 로고
    • A Tabu search-based heuristic for clustering
    • Sung C.S., and Jin H.W. A Tabu search-based heuristic for clustering. Pattern Recognit. 33 (2000) 849-858
    • (2000) Pattern Recognit. , vol.33 , pp. 849-858
    • Sung, C.S.1    Jin, H.W.2
  • 32
    • 23844482899 scopus 로고    scopus 로고
    • Simulated annealing fuzzy clustering in cancer diagnosis
    • Wang X.Y., and Garibaldi J.M. Simulated annealing fuzzy clustering in cancer diagnosis. Informatica 29 (2005) 61-70
    • (2005) Informatica , vol.29 , pp. 61-70
    • Wang, X.Y.1    Garibaldi, J.M.2
  • 33
    • 33846703396 scopus 로고    scopus 로고
    • B. Zhang, M. Hsu, U. Dayal, K-harmonic means - A data clustering algorithm, Technical Report HPL-1999-124, Hewlett-Packard Laboratories (1999).
  • 34
    • 33846691240 scopus 로고    scopus 로고
    • B. Zhang, M. Hsu, U. Dayal, K-Harmonic Means, in: Proc. of International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining, TSDM2000, Lyon, France, September 12 (2000).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.