메뉴 건너뛰기




Volumn 37, Issue 7, 2010, Pages 4928-4934

Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models

Author keywords

Asymmetry; Distribution; GARCH; SPA test; Volatility

Indexed keywords

ASYMMETRIC COMPONENT; DAILY VOLATILITY FORECASTING; EGARCH MODELS; EMPIRICAL RESULTS; ERROR DISTRIBUTIONS; FAT TAILS; FINANCIAL RETURNS; GARCH MODELS; GARCH-T; GJR-GARCH MODELS; LEPTOKURTOSIS; LEVERAGE EFFECTS; PERFORMANCE IMPROVEMENTS; PREDICTIVE ABILITIES; STOCK INDICES; VOLATILITY FORECASTS;

EID: 77950188506     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.12.022     Document Type: Article
Times cited : (68)

References (45)
  • 2
    • 0031161196 scopus 로고    scopus 로고
    • Intraday periodicity and volatility persistence in financial markets
    • Andersen T.G., and Bollerslev T. Intraday periodicity and volatility persistence in financial markets. Journal of Empirical Finance 4 (1997) 115-158
    • (1997) Journal of Empirical Finance , vol.4 , pp. 115-158
    • Andersen, T.G.1    Bollerslev, T.2
  • 3
    • 0005880209 scopus 로고    scopus 로고
    • Answering the Skeptics: Yes, standard volatility models do provide accurate forecasts
    • Andersen T.G., and Bollerslev T. Answering the Skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review 39 4 (1998) 885-905
    • (1998) International Economic Review , vol.39 , Issue.4 , pp. 885-905
    • Andersen, T.G.1    Bollerslev, T.2
  • 4
    • 0041308591 scopus 로고    scopus 로고
    • Forecasting financial market volatility: Sample frequency vis-à-vis forecast horizon
    • Andersen T.G., Bollerslev T., and Lange S. Forecasting financial market volatility: Sample frequency vis-à-vis forecast horizon. Journal of Empirical Finance 6 (1999) 457-477
    • (1999) Journal of Empirical Finance , vol.6 , pp. 457-477
    • Andersen, T.G.1    Bollerslev, T.2    Lange, S.3
  • 5
    • 11944251556 scopus 로고    scopus 로고
    • Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries
    • Awartani B.M.A., and Corradi V. Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries. International Journal of Forecasting 21 (2005) 167-183
    • (2005) International Journal of Forecasting , vol.21 , pp. 167-183
    • Awartani, B.M.A.1    Corradi, V.2
  • 6
    • 1342290472 scopus 로고    scopus 로고
    • Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate
    • Balaban E. Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate. Economics Letters 83 (2004) 99-105
    • (2004) Economics Letters , vol.83 , pp. 99-105
    • Balaban, E.1
  • 7
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31 (1986) 307-327
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 8
    • 0000375581 scopus 로고
    • A conditional heteroskedastic time series model for speculative prices and rates of return
    • Bollerslev T. A conditional heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics 69 (1987) 542-547
    • (1987) Review of Economics and Statistics , vol.69 , pp. 542-547
    • Bollerslev, T.1
  • 10
    • 0346111502 scopus 로고    scopus 로고
    • Model choice and Value-at-Risk performance
    • Brooks C., and Persand G. Model choice and Value-at-Risk performance. Financial Analysts Journal 58 (2002) 87-97
    • (2002) Financial Analysts Journal , vol.58 , pp. 87-97
    • Brooks, C.1    Persand, G.2
  • 11
    • 0001578132 scopus 로고    scopus 로고
    • Performance of GARCH models in forecasting stock market volatility
    • Chong C.W., Ahmad M.I., and Abdullah M.Y. Performance of GARCH models in forecasting stock market volatility. Journal of Forecasting 18 (1999) 333-343
    • (1999) Journal of Forecasting , vol.18 , pp. 333-343
    • Chong, C.W.1    Ahmad, M.I.2    Abdullah, M.Y.3
  • 12
    • 34548686105 scopus 로고    scopus 로고
    • Forecasting volatility in the financial markets: A comparison of alternative distributional assumptions
    • Chuang I.Y., Lu J.R., and Lee P.H. Forecasting volatility in the financial markets: A comparison of alternative distributional assumptions. Applied Financial Economics 17 (2007) 1051-1060
    • (2007) Applied Financial Economics , vol.17 , pp. 1051-1060
    • Chuang, I.Y.1    Lu, J.R.2    Lee, P.H.3
  • 13
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroskedasticity with estimates of variance of UK inflation
    • Engle R.F. Autoregressive conditional heteroskedasticity with estimates of variance of UK inflation. Econometrica 50 (1982) 987-1008
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 14
    • 84993924525 scopus 로고
    • Measuring and testing the impact of news on volatility
    • Engle R.F., and Ng V.K. Measuring and testing the impact of news on volatility. Journal of Finance 48 (1993) 1749-1778
    • (1993) Journal of Finance , vol.48 , pp. 1749-1778
    • Engle, R.F.1    Ng, V.K.2
  • 15
    • 36148933765 scopus 로고    scopus 로고
    • Volatility forecasts: The role of asymmetric and long-memory dynamics and regional evidence
    • Evans T., and McMillan D.G. Volatility forecasts: The role of asymmetric and long-memory dynamics and regional evidence. Applied Financial Economics 17 (2007) 1421-1430
    • (2007) Applied Financial Economics , vol.17 , pp. 1421-1430
    • Evans, T.1    McMillan, D.G.2
  • 17
    • 0000557541 scopus 로고    scopus 로고
    • Forecasting stock market volatility using (non-linear) GARCH models
    • Franses P.H., and van Dijk R. Forecasting stock market volatility using (non-linear) GARCH models. Journal of Forecasting 15 (1996) 229-235
    • (1996) Journal of Forecasting , vol.15 , pp. 229-235
    • Franses, P.H.1    van Dijk, R.2
  • 18
    • 84993601065 scopus 로고
    • On the relation between the expected value and the volatility nominal excess return on stocks
    • Glosten L., Jagannathan R., and Runkle D. On the relation between the expected value and the volatility nominal excess return on stocks. Journal of Finance 46 (1993) 1779-1801
    • (1993) Journal of Finance , vol.46 , pp. 1779-1801
    • Glosten, L.1    Jagannathan, R.2    Runkle, D.3
  • 19
    • 0038785218 scopus 로고    scopus 로고
    • Forecasting volatility of emerging stock market: linear versus non-linear GARCH models
    • Gokcan S. Forecasting volatility of emerging stock market: linear versus non-linear GARCH models. Journal of Forecasting 19 (2000) 499-504
    • (2000) Journal of Forecasting , vol.19 , pp. 499-504
    • Gokcan, S.1
  • 20
    • 21144448250 scopus 로고
    • Autoregressive conditional heteroskedasticity and changes in regime
    • Hamilton J., and Susmel R. Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics 64 (1994) 307-333
    • (1994) Journal of Econometrics , vol.64 , pp. 307-333
    • Hamilton, J.1    Susmel, R.2
  • 22
    • 19644379708 scopus 로고    scopus 로고
    • A forecast comparison of volatility models: Does anything beat a GARCH(1, 1)?
    • Hansen P.R., and Lunde A. A forecast comparison of volatility models: Does anything beat a GARCH(1, 1)?. Journal of Applied Econometrics 20 (2005) 873-889
    • (2005) Journal of Applied Econometrics , vol.20 , pp. 873-889
    • Hansen, P.R.1    Lunde, A.2
  • 23
    • 33644524444 scopus 로고    scopus 로고
    • Consistent ranking of volatility models
    • Hansen P.R., and Lunde A. Consistent ranking of volatility models. Journal of Econometrics 131 (2006) 97-121
    • (2006) Journal of Econometrics , vol.131 , pp. 97-121
    • Hansen, P.R.1    Lunde, A.2
  • 24
    • 0002021472 scopus 로고
    • Volatility prediction: A comparison of stochastic volatility, GARCH(1, 1) and EGARCH models
    • Heynen R.C., and Kat H.M. Volatility prediction: A comparison of stochastic volatility, GARCH(1, 1) and EGARCH models. Journal of Derivatives 2 (1994) 50-65
    • (1994) Journal of Derivatives , vol.2 , pp. 50-65
    • Heynen, R.C.1    Kat, H.M.2
  • 25
    • 39749109586 scopus 로고    scopus 로고
    • Estimation of Value-at-Risk for energy commodities via fat-tailed GARCH models
    • Hung J.C., Lee M.C., and Liu H.C. Estimation of Value-at-Risk for energy commodities via fat-tailed GARCH models. Energy Economics 30 (2008) 1173-1191
    • (2008) Energy Economics , vol.30 , pp. 1173-1191
    • Hung, J.C.1    Lee, M.C.2    Liu, H.C.3
  • 26
    • 11344278864 scopus 로고    scopus 로고
    • In sample or out of sample tests for predictability: Which one should we use?
    • Inoue A., and Kilian L. In sample or out of sample tests for predictability: Which one should we use?. Econometric Reviews 23 (2004) 371-402
    • (2004) Econometric Reviews , vol.23 , pp. 371-402
    • Inoue, A.1    Kilian, L.2
  • 27
    • 0002437730 scopus 로고
    • A test for normality of observations and regression residuals
    • Jarque C.M., and Bera A.K. A test for normality of observations and regression residuals. International Statistics Review 55 (1987) 163-172
    • (1987) International Statistics Review , vol.55 , pp. 163-172
    • Jarque, C.M.1    Bera, A.K.2
  • 28
    • 19644389883 scopus 로고    scopus 로고
    • Forecasting daily volatility of the S&P-100 stock index using historical, realized and implied volatility measurements
    • Koopman S.J., Jungbacker B., and Hol E. Forecasting daily volatility of the S&P-100 stock index using historical, realized and implied volatility measurements. Journal of Empirical Finance 12 (2005) 445-475
    • (2005) Journal of Empirical Finance , vol.12 , pp. 445-475
    • Koopman, S.J.1    Jungbacker, B.2    Hol, E.3
  • 29
    • 34247480179 scopus 로고
    • Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?
    • Kwiatkowski D., Phillips P.C.B., Schmidt P., and Shin Y. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?. Journal of Econometrics 54 (1992) 159-178
    • (1992) Journal of Econometrics , vol.54 , pp. 159-178
    • Kwiatkowski, D.1    Phillips, P.C.B.2    Schmidt, P.3    Shin, Y.4
  • 30
    • 0001283032 scopus 로고    scopus 로고
    • Stationarity and the existence of moments of a family of GARCH processes
    • Ling S., and McAleer M. Stationarity and the existence of moments of a family of GARCH processes. Journal of Econometrics 106 (2002) 109-117
    • (2002) Journal of Econometrics , vol.106 , pp. 109-117
    • Ling, S.1    McAleer, M.2
  • 32
    • 4744342417 scopus 로고    scopus 로고
    • Daily volatility forecasts: Reassessing the performance of GARCH models
    • McMillan D.G., and Speight A.E.H. Daily volatility forecasts: Reassessing the performance of GARCH models. Journal of Forecasting 23 (2004) 449-460
    • (2004) Journal of Forecasting , vol.23 , pp. 449-460
    • McMillan, D.G.1    Speight, A.E.H.2
  • 34
    • 29144513798 scopus 로고    scopus 로고
    • Forecasting stock market volatility with regime-switching GARCH models
    • Marcucci J. Forecasting stock market volatility with regime-switching GARCH models. Studies in Nonlinear Dynamics and Econometrics 9 (2005) 1-53
    • (2005) Studies in Nonlinear Dynamics and Econometrics , vol.9 , pp. 1-53
    • Marcucci, J.1
  • 35
    • 0000641348 scopus 로고
    • Conditional heteroskedasticity in asset returns: A new approach
    • Nelson D.B. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 (1991) 347-370
    • (1991) Econometrica , vol.59 , pp. 347-370
    • Nelson, D.B.1
  • 36
    • 0742306406 scopus 로고    scopus 로고
    • Recursive modelling of symmetric and asymmetric volatility in the presence of extreme observations
    • Ng H.G., and McAleer M. Recursive modelling of symmetric and asymmetric volatility in the presence of extreme observations. International Journal of Forecasting 20 (2004) 115-129
    • (2004) International Journal of Forecasting , vol.20 , pp. 115-129
    • Ng, H.G.1    McAleer, M.2
  • 37
    • 77956888124 scopus 로고
    • Testing for a unit root in time series regression
    • Phillips P.C.B., and Perron P. Testing for a unit root in time series regression. Biometrika 75 (1988) 335-346
    • (1988) Biometrika , vol.75 , pp. 335-346
    • Phillips, P.C.B.1    Perron, P.2
  • 38
    • 33645868808 scopus 로고    scopus 로고
    • A heavy-tailed distribution for arch residuals with application to volatility prediction
    • Politis D.N. A heavy-tailed distribution for arch residuals with application to volatility prediction. Annals of Economics and Finance 5 (2004) 283-298
    • (2004) Annals of Economics and Finance , vol.5 , pp. 283-298
    • Politis, D.N.1
  • 40
    • 33745662678 scopus 로고    scopus 로고
    • Modeling and forecasting petroleum futures volatility
    • Sadorsky P. Modeling and forecasting petroleum futures volatility. Energy Economics 28 (2006) 467-488
    • (2006) Energy Economics , vol.28 , pp. 467-488
    • Sadorsky, P.1
  • 41
    • 1842810938 scopus 로고    scopus 로고
    • Volatility forecasting with smooth transition exponential smoothing
    • Taylor J.W. Volatility forecasting with smooth transition exponential smoothing. International Journal of Forecasting 20 (2004) 273-286
    • (2004) International Journal of Forecasting , vol.20 , pp. 273-286
    • Taylor, J.W.1
  • 42
    • 0032301238 scopus 로고    scopus 로고
    • Financial data and the skewed generalized t distribution
    • Theodossiou P. Financial data and the skewed generalized t distribution. Management Science 44 (1998) 1650-1661
    • (1998) Management Science , vol.44 , pp. 1650-1661
    • Theodossiou, P.1
  • 43
    • 0012501155 scopus 로고    scopus 로고
    • Forecasting stock market volatility with non-linear GARCH models: A case for China
    • Wei W. Forecasting stock market volatility with non-linear GARCH models: A case for China. Applied Economics Letters 9 (2002) 163-166
    • (2002) Applied Economics Letters , vol.9 , pp. 163-166
    • Wei, W.1
  • 44
    • 0000028873 scopus 로고    scopus 로고
    • A reality check for data snooping
    • White H. A reality check for data snooping. Econometrica 68 (2000) 1097-1126
    • (2000) Econometrica , vol.68 , pp. 1097-1126
    • White, H.1
  • 45
    • 33845968035 scopus 로고    scopus 로고
    • GARCH forecasting performance under different distribution assumptions
    • Wilhelmsson A. GARCH forecasting performance under different distribution assumptions. Journal of Forecasting 25 (2006) 561-578
    • (2006) Journal of Forecasting , vol.25 , pp. 561-578
    • Wilhelmsson, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.