-
1
-
-
33845607627
-
Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds
-
Jones JR, et al. Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials. 2007; 28(7): 1404-13.
-
(2007)
Biomaterials
, vol.28
, Issue.7
, pp. 1404-1413
-
-
Jones, J.R.1
-
2
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005; 26(27): 5474-91.
-
(2005)
Biomaterials
, vol.26
, Issue.27
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
3
-
-
33847369066
-
Porous hydroxyapatite for artificial bone applications
-
Sopyan I, et al. Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mater. 2007; 8(1-2): 116-23.
-
(2007)
Sci Technol Adv Mater
, vol.8
, Issue.1-2
, pp. 116-123
-
-
Sopyan, I.1
-
4
-
-
33746220378
-
In vivo behavior of calcium phosphate scaffolds with four different pore sizes
-
von Doernberg M-C, et al. In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials. 2006; 27(30): 5186-98.
-
(2006)
Biomaterials
, vol.27
, Issue.30
, pp. 5186-5198
-
-
von Doernberg, M.-C.1
-
6
-
-
0033341459
-
Manufacture of macroporous calcium hydroxyapatite bioceramics
-
Engin NO, Tas AC. Manufacture of macroporous calcium hydroxyapatite bioceramics. J Eur Ceram Soc. 1999; 19: 2569-72.
-
(1999)
J Eur Ceram Soc
, vol.19
, pp. 2569-2572
-
-
Engin, N.O.1
Tas, A.C.2
-
7
-
-
84991148363
-
Application of porous ceramics for the attachment of load bearing internal orthopaedic applications
-
Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopaedic applications. J Biomed Mater Res Symp. 1971; 2(1): 161-229.
-
(1971)
J Biomed Mater Res Symp
, vol.2
, Issue.1
, pp. 161-229
-
-
Klawitter, J.J.1
Hulbert, S.F.2
-
8
-
-
1542411513
-
Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes
-
Bohner M, Baumgart F. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials. 2004; 25(17): 3569-82.
-
(2004)
Biomaterials
, vol.25
, Issue.17
, pp. 3569-3582
-
-
Bohner, M.1
Baumgart, F.2
-
9
-
-
0348011497
-
Effect of micro-and macroporosity of bone substitutes on their mechanical properties and cellular response
-
Bignon A, et al. Effect of micro-and macroporosity of bone substitutes on their mechanical properties and cellular response. Mater Med. 2003; 14: 1089-97.
-
(2003)
Mater Med
, vol.14
, pp. 1089-1097
-
-
Bignon, A.1
-
10
-
-
4444376080
-
The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering
-
Cyster LA, et al. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials. 2005; 26(7): 697-702.
-
(2005)
Biomaterials
, vol.26
, Issue.7
, pp. 697-702
-
-
Cyster, L.A.1
-
11
-
-
33644789527
-
Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics
-
Mastrogiacomo M, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006; 27(17): 3230-7.
-
(2006)
Biomaterials
, vol.27
, Issue.17
, pp. 3230-3237
-
-
Mastrogiacomo, M.1
-
12
-
-
33748904647
-
The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity
-
Woodard JR, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007; 28(1): 45-54.
-
(2007)
Biomaterials
, vol.28
, Issue.1
, pp. 45-54
-
-
Woodard, J.R.1
-
13
-
-
17844401459
-
Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting
-
Woesz A, et al. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Mater Sci Eng C. 2005; 25(2): 181-6.
-
(2005)
Mater Sci Eng C
, vol.25
, Issue.2
, pp. 181-186
-
-
Woesz, A.1
-
14
-
-
0035671158
-
The design of scaffolds for use in tissue engineering. Part 1. Traditional factors
-
Yang SF. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng. 2001; 7(6): 679-89.
-
(2001)
Tissue Eng
, vol.7
, Issue.6
, pp. 679-689
-
-
Yang, S.F.1
-
15
-
-
3042724907
-
Xenografts are an achievable breakthrough
-
Alisky JM. Xenografts are an achievable breakthrough. Med Hypotheses. 2004; 63(1): 92-7.
-
(2004)
Med Hypotheses
, vol.63
, Issue.1
, pp. 92-97
-
-
Alisky, J.M.1
-
16
-
-
0032403112
-
A synthetic bone implant macroscopically identical to cancellous bone
-
Tancred DC, McCormack BAO, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials. 1998; 19(24): 2303-11.
-
(1998)
Biomaterials
, vol.19
, Issue.24
, pp. 2303-2311
-
-
Tancred, D.C.1
McCormack, B.A.O.2
Carr, A.J.3
-
17
-
-
0036590661
-
The role of the osteoconductive scaffold in synthetic bone graft
-
Vaccaro A. The role of the osteoconductive scaffold in synthetic bone graft. Orthopaeadics. 2002; 25(5): s571-8.
-
(2002)
Orthopaeadics
, vol.25
, Issue.5
, pp. s571-s578
-
-
Vaccaro, A.1
-
18
-
-
34447267742
-
Comparative performance of three ceramic bone graft substitutes
-
Hing KA, Wilson LF, Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007; 7(4): 475-90.
-
(2007)
Spine J
, vol.7
, Issue.4
, pp. 475-490
-
-
Hing, K.A.1
Wilson, L.F.2
Buckland, T.3
-
19
-
-
34648846691
-
(V) Which scaffold for which application?
-
Blom A. (V) Which scaffold for which application? Curr Orthop. 2007; 21(4): 280-7.
-
(2007)
Curr Orthop
, vol.21
, Issue.4
, pp. 280-287
-
-
Blom, A.1
-
20
-
-
50949123130
-
Preparation and characterization of ceramic foam produced via polymeric foam replication method
-
(in press, corrected proof)
-
Muhamad Nor MAA et al. Preparation and characterization of ceramic foam produced via polymeric foam replication method. J Mater Process Technol. 2008; (in press, corrected proof).
-
(2008)
J Mater Process Technol
-
-
Muhamad Nor, M.A.A.1
-
21
-
-
29244481982
-
45S5 Bioglass derived glass ceramic scaffolds for bone tissue engineering
-
Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass derived glass ceramic scaffolds for bone tissue engineering. Biomaterials. 2006; 27: 2414-25.
-
(2006)
Biomaterials
, vol.27
, pp. 2414-2425
-
-
Chen, Q.Z.1
Thompson, I.D.2
Boccaccini, A.R.3
-
22
-
-
33847105017
-
Preparation of porous hydroxyapatite scaffolds
-
Saiz E, et al. Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C. 2007; 27(3): 546-50.
-
(2007)
Mater Sci Eng C
, vol.27
, Issue.3
, pp. 546-550
-
-
Saiz, E.1
-
23
-
-
0037718081
-
Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods
-
Ramay HR, Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials. 2003; 24(19): 3293-302.
-
(2003)
Biomaterials
, vol.24
, Issue.19
, pp. 3293-3302
-
-
Ramay, H.R.1
Zhang, M.2
-
24
-
-
15244354813
-
Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release
-
Kim H-W, Knowles JC, Kim H-E. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release. J Mater Sci: Mater Med. 2005; 16(3): 189-95.
-
(2005)
J Mater Sci: Mater Med
, vol.16
, Issue.3
, pp. 189-195
-
-
Kim, H.-W.1
Knowles, J.C.2
Kim, H.-E.3
-
25
-
-
0036234118
-
Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam
-
Callcut S, Knowles JC. Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam. J Mater Sci: Mater Med. 2002; 13(5): 485-9.
-
(2002)
J Mater Sci: Mater Med
, vol.13
, Issue.5
, pp. 485-489
-
-
Callcut, S.1
Knowles, J.C.2
-
26
-
-
0345256537
-
Hydroxyapatite/poly([var epsilon]-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery
-
Kim H-W, Knowles JC, Kim H-E. Hydroxyapatite/poly([var epsilon]-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004; 25 (7-8): 1279-87.
-
(2004)
Biomaterials
, vol.25
, Issue.7-8
, pp. 1279-1287
-
-
Kim, H.-W.1
Knowles, J.C.2
Kim, H.-E.3
-
27
-
-
34548525935
-
Bioinspired structure of bioceramics for bone regeneration in load-bearing sites
-
Zhang F, et al. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Acta Biomater. 2007; 3(6): 896-904.
-
(2007)
Acta Biomater
, vol.3
, Issue.6
, pp. 896-904
-
-
Zhang, F.1
-
28
-
-
25844438541
-
Traditional and modern biomedical prospecting: Part I-the history sustainable exploitation of biodiversity (sponges and invertebrates) in the Adriatic Sea in Rovinj (Croatia)
-
Müller WEG, et al. Traditional and modern biomedical prospecting: Part I-the history sustainable exploitation of biodiversity (sponges and invertebrates) in the Adriatic Sea in Rovinj (Croatia). Evid Based Complement Alternat Med (eCAM). 2004; 1(1): 71-82.
-
(2004)
Evid Based Complement Alternat Med (eCAM)
, vol.1
, Issue.1
, pp. 71-82
-
-
Müller, W.E.G.1
-
29
-
-
29244489548
-
Biomimetic apatite coating on biomorphous alumina scaffolds
-
Rambo CR, et al. Biomimetic apatite coating on biomorphous alumina scaffolds. Mater Sci Eng C. 2006; 26(1): 92-9.
-
(2006)
Mater Sci Eng C
, vol.26
, Issue.1
, pp. 92-99
-
-
Rambo, C.R.1
-
30
-
-
70349322762
-
High-solid-content hydroxyapatite slurry for the production of bone substitute scaffolds
-
Cunningham E, et al. High-solid-content hydroxyapatite slurry for the production of bone substitute scaffolds. Proc Inst Mech Eng [H]. 2009; 223(6): 727-37.
-
(2009)
Proc Inst Mech Eng [H]
, vol.223
, Issue.6
, pp. 727-737
-
-
Cunningham, E.1
-
31
-
-
0033102546
-
Mercury intrusion porosimetry and image analysis of cement-based materials
-
Abell AB, Willis KL, Lange DA. Mercury intrusion porosimetry and image analysis of cement-based materials. J Colloid Interf Sci. 1999; 211: 39-44.
-
(1999)
J Colloid Interf Sci
, vol.211
, pp. 39-44
-
-
Abell, A.B.1
Willis, K.L.2
Lange, D.A.3
-
32
-
-
0036351022
-
Ink-bottle effect in mercury intrusion porosimetry of cement-based materials
-
Moro F, Bohni H. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. J Colloid Interf Sci. 2001; 246: 135-49.
-
(2001)
J Colloid Interf Sci
, vol.246
, pp. 135-149
-
-
Moro, F.1
Bohni, H.2
-
33
-
-
45249092368
-
Mediterranean commercial sponges: Over 5000 years of natural history and cultural heritage
-
Pronzato R, Manconi R. Mediterranean commercial sponges: over 5000 years of natural history and cultural heritage. Mar Ecol. 2008; 29: 144-66.
-
(2008)
Mar Ecol
, vol.29
, pp. 144-166
-
-
Pronzato, R.1
Manconi, R.2
-
34
-
-
0034116509
-
Osteoconduction at porous hydroxyapatite with various pore configurations
-
Chang B-S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 2000; 21(12): 1291-8.
-
(2000)
Biomaterials
, vol.21
, Issue.12
, pp. 1291-1298
-
-
Chang, B.-S.1
-
35
-
-
15344341328
-
Macroporous biphasic calcium phosphate ceramics: Influence of macropore diameter and macroporosity percentage on bone ingrowth
-
Gauthier O, et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998; 19(1-3): 133-9.
-
(1998)
Biomaterials
, vol.19
, Issue.1-3
, pp. 133-139
-
-
Gauthier, O.1
-
36
-
-
0028798601
-
Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress
-
Le Huec JC, et al. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials. 1995; 16(2): 113-8.
-
(1995)
Biomaterials
, vol.16
, Issue.2
, pp. 113-118
-
-
Le Huec, J.C.1
|