메뉴 건너뛰기




Volumn 6, Issue 4, 2015, Pages 257-266

Latent subclass learning-based unsupervised ensemble feature extraction method for hyperspectral image classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); FACTORIZATION; LEARNING SYSTEMS; LOGISTIC REGRESSION; PIXELS; SET THEORY; SPECTROSCOPY; UNSUPERVISED LEARNING;

EID: 84928480020     PISSN: 2150704X     EISSN: 21507058     Source Type: Journal    
DOI: 10.1080/2150704X.2015.1029087     Document Type: Article
Times cited : (12)

References (22)
  • 1
    • 79957511061 scopus 로고    scopus 로고
    • Statistical inference in PCA for hyperspectral images
    • Bajorski, P. 2011. " Statistical Inference in PCA for Hyperspectral Images." IEEE Journal of Selected Topics in Signal Processing 5: 438-445. doi: 10.1109/JSTS0050.2011.2105244.
    • (2011) IEEE Journal of Selected Topics in Signal Processing , vol.5 , pp. 438-445
    • Bajorski, P.1
  • 4
    • 0033309449 scopus 로고    scopus 로고
    • Spectral information divergence for hyperspectral image analysis
    • edited by T. I. Stein, Hamburg, June 28-July 2,. Piscataway, NJ: IEEE publications
    • Chang, C. 1999. " Spectral Information Divergence for Hyperspectral Image Analysis." In Nineteenth IEEE International Conference on Geoscience and Remote Sensing Symposium, Vol. 1, edited by T. I. Stein, Hamburg, June 28-July 2, 509-511. Piscataway, NJ: IEEE publications.
    • (1999) Nineteenth IEEE International Conference on Geoscience and Remote Sensing Symposium , vol.1 , pp. 509-511
    • Chang, C.1
  • 5
    • 84898771670 scopus 로고    scopus 로고
    • Ensemble projection for semi-supervised image classification
    • edited by L. Davis and R. Hartley, Sydney, December 3-6,. Piscataway, NJ: IEEE publications
    • Dai, D., and G. L. Van. 2013. " Ensemble Projection for Semi-Supervised Image Classification." In Fourteenth IEEE International Conference on Computer Vision, edited by L. Davis and R. Hartley, Sydney, December 3-6, 2072-2079. Piscataway, NJ: IEEE publications.
    • (2013) Fourteenth IEEE International Conference on Computer Vision , pp. 2072-2079
    • Dai, D.1    Van, G. L.2
  • 6
    • 84892957360 scopus 로고    scopus 로고
    • Band elimination of hyperspectral imagery using partitioned band image correlation and capacitory discrimination
    • Datta, A., S. Ghosh, and A. Ghosh. 2014. " Band Elimination of Hyperspectral Imagery Using Partitioned Band Image Correlation and Capacitory Discrimination." International Journal of Remote Sensing 35: 554-577. doi: 10.1080/01431161.2013.871392.
    • (2014) International Journal of Remote Sensing , vol.35 , pp. 554-577
    • Datta, A.1    Ghosh, S.2    Ghosh, A.3
  • 7
    • 79955598048 scopus 로고    scopus 로고
    • Discriminant absorption-feature learning for material classification
    • Fu, Z., and A. Robles-Kelly. 2011. " Discriminant Absorption-Feature Learning for Material Classification." IEEE Transactions on Geoscience and Remote Sensing 49: 1536-1556. doi: 10.1109/TGRS.2010.2086462.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , pp. 1536-1556
    • Fu, Z.1    Robles-Kelly, A.2
  • 9
    • 0036508031 scopus 로고    scopus 로고
    • Cluster-space representation for hyperspectral data classification
    • Jia, X., and J. A. Richards. 2002. " Cluster-Space Representation for Hyperspectral Data Classification." IEEE Transactions on Geoscience and Remote Sensing 40: 593-598. doi: 10.1109/TGRS.2002.1000319.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , pp. 593-598
    • Jia, X.1    Richards, J.A.2
  • 10
    • 16444366244 scopus 로고    scopus 로고
    • Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data
    • Jimenez, L. O., J. L. Rivera-Medina, E. Rodriguez-Diaz, E. Arzuaga-Cruz, and M. Ramirez-Velez. 2005. " Integration of Spatial and Spectral Information by Means of Unsupervised Extraction and Classification for Homogenous Objects Applied to Multispectral and Hyperspectral Data." IEEE Transactions on Geoscience and Remote Sensing 43: 844-851. doi: 10.1109/TGRS.2004.843193.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , pp. 844-851
    • Jimenez, L.O.1    Rivera-Medina, J.L.2    Rodriguez-Diaz, E.3    Arzuaga-Cruz, E.4    Ramirez-Velez, M.5
  • 12
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • Kuo, B. C., and D. A. Landgrebe. 2004. " Nonparametric Weighted Feature Extraction for Classification." IEEE Transactions on Geoscience and Remote Sensing 42: 1096-1105. doi: 10.1109/TGRS.2004.825578.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1096-1105
    • Kuo, B.C.1    Landgrebe, D.A.2
  • 13
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee, D., and H. S. Seung. 1999. " Learning the Parts of Objects by Nonnegative Matrix Factorization." Nature 401: 788-791. doi: 10.1038/44565.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.S.2
  • 14
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new bayesian approach with active learning
    • Li, J., J. Bioucas-Dias, and A. Plaza. 2011. " Hyperspectral Image Segmentation Using a New Bayesian Approach with Active Learning." IEEE Transactions on Geoscience and Remote Sensing 49: 3947-3960. doi: 10.1109/TGRS.2011.2128330.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 15
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • Plaza, A., P. Martinez, J. Plaza, and R. Perez. 2005. " Dimensionality Reduction and Classification of Hyperspectral Image Data Using Sequences of Extended Morphological Transformations." IEEE Transactions on Geoscience and Remote Sensing 43: 466-479. doi: 10.1109/TGRS.2004.841417.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , pp. 466-479
    • Plaza, A.1    Martinez, P.2    Plaza, J.3    Perez, R.4
  • 17
    • 1242332729 scopus 로고    scopus 로고
    • Unsupervised classification of hyperspectral data: An ICA mixture model based approach
    • Shah, C. A., M. K. Arora, and P. K. Varshney. 2004. " Unsupervised Classification of Hyperspectral Data: An ICA Mixture Model Based Approach." International Journal of Remote Sensing 25: 481-487. doi: 10.1080/01431160310001618040.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 481-487
    • Shah, C.A.1    Arora, M.K.2    Varshney, P.K.3
  • 18
    • 84904987860 scopus 로고    scopus 로고
    • Local discriminant non-negative matrix factorization feature extraction for hyperspectral image classification
    • Wen, J., Y. Zhao, X. Zhang, W. Yan, and W. Lin. 2014. " Local Discriminant Non-Negative Matrix Factorization Feature Extraction for Hyperspectral Image Classification." International Journal of Remote Sensing 35: 5073-5093. doi: 10.1080/01431161.2014.930198.
    • (2014) International Journal of Remote Sensing , vol.35 , pp. 5073-5093
    • Wen, J.1    Zhao, Y.2    Zhang, X.3    Yan, W.4    Lin, W.5
  • 19
    • 84892912421 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization and hyperspectral image dimensionality reduction
    • Xiao, Z., and S. Bourennane. 2014. " Constrained Nonnegative Matrix Factorization and Hyperspectral Image Dimensionality Reduction." Remote Sensing Letters 5: 46-54. doi: 10.1080/2150704X.2013.870674.
    • (2014) Remote Sensing Letters , vol.5 , pp. 46-54
    • Xiao, Z.1    Bourennane, S.2
  • 20
    • 84904597606 scopus 로고    scopus 로고
    • A new committee-based active learning (CBAL) approach to hyperspectral remote sensing data classification
    • Xu, J., and R. Hang. 2014. " A New Committee-Based Active Learning (CBAL) Approach to Hyperspectral Remote Sensing Data Classification." Remote Sensing Letters 5: 511-520. doi: 10.1080/2150704X.2014.928423.
    • (2014) Remote Sensing Letters , vol.5 , pp. 511-520
    • Xu, J.1    Hang, R.2
  • 21
    • 33847374231 scopus 로고    scopus 로고
    • Linear local tangent space alignment and application to face recognition
    • Zhang, T., J. Yang, D. Zhao, and X. Ge. 2007. " Linear Local Tangent Space Alignment and Application to Face Recognition." Neurocomputing Letters 70: 1547-1553. doi: 10.1016/j.neucom.2006.11.007.
    • (2007) Neurocomputing Letters , vol.70 , pp. 1547-1553
    • Zhang, T.1    Yang, J.2    Zhao, D.3    Ge, X.4
  • 22
    • 31444446724 scopus 로고    scopus 로고
    • An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery
    • Zhong, Y., L. Zhang, B. Huang, and P. Li. 2006. " An Unsupervised Artificial Immune Classifier for Multi/Hyperspectral Remote Sensing Imagery." IEEE Transactions on Geoscience and Remote Sensing 44: 420-431. doi: 10.1109/TGRS.2005.861548.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , pp. 420-431
    • Zhong, Y.1    Zhang, L.2    Huang, B.3    Li, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.