메뉴 건너뛰기




Volumn 5, Issue 3, 2015, Pages 1-6

Hybrid photocathodes for solar fuel production: Coupling molecular fuelproduction catalysts with solid-state light harvesting and conversion technologies

Author keywords

Artificial photosynthesis; Catalysis; Interfaces; Semiconductors; Solar fuels

Indexed keywords


EID: 84928329164     PISSN: 20428898     EISSN: 20428901     Source Type: Journal    
DOI: 10.1098/rsfs.2014.0085     Document Type: Review
Times cited : (12)

References (77)
  • 1
    • 0011479043 scopus 로고
    • Photochemical conversion and storage of solar energy
    • Bolton JR, Hall DO. 1979 Photochemical conversion and storage of solar energy. Annu. Rev. Energy 4, 353–401. (doi:10.1146/annurev.eg.04.110179.002033)
    • (1979) Annu. Rev. Energy , vol.4 , pp. 353-401
    • Bolton, J.R.1    Hall, D.O.2
  • 2
    • 0001436585 scopus 로고
    • The photochemistry of the future
    • Ciamician G. 1912 The photochemistry of the future. Science 36, 385–394. (doi:10.1126/science.36.926.385)
    • (1912) Science , vol.36 , pp. 385-394
    • Ciamician, G.1
  • 3
    • 0023040513 scopus 로고
    • Surface functionalization of electrodes with molecular reagents
    • Wrighton MS. 1986 Surface functionalization of electrodes with molecular reagents. Science 231, 32–37. (doi:10.1126/science.231.4733.32)
    • (1986) Science , vol.231 , pp. 32-37
    • Wrighton, M.S.1
  • 4
    • 0000574755 scopus 로고
    • Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen
    • Bard AJ, Fox MA. 1995 Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145. (doi:10.1021/ar00051a007)
    • (1995) Acc. Chem. Res , vol.28 , pp. 141-145
    • Bard, A.J.1    Fox, M.A.2
  • 5
    • 0017058392 scopus 로고
    • Evolution of enzyme function and the development of catalytic efficiency
    • Albery WJ, Knowles JR. 1976 Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640. (doi:10.1021/bi00670a032)
    • (1976) Biochemistry , vol.15 , pp. 5631-5640
    • Albery, W.J.1    Knowles, J.R.2
  • 6
    • 80052154091 scopus 로고    scopus 로고
    • Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes
    • Armstrong FA, Hirst J. 2011 Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14 049–14 054. (doi:10.1073/pnas.1103697108)
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , Issue.14 , pp. 049-114
    • Armstrong, F.A.1    Hirst, J.2
  • 7
    • 23744479088 scopus 로고    scopus 로고
    • Some general principles for designing electrocatalysts with hydrogenase activity
    • Artero V, Fontecave M. 2005 Some general principles for designing electrocatalysts with hydrogenase activity. Coord. Chem. Rev. 249, 1518–1535. (doi:10.1016/j.ccr.2005.01.014)
    • (2005) Coord. Chem. Rev , vol.249 , pp. 1518-1535
    • Artero, V.1    Fontecave, M.2
  • 8
    • 84870667497 scopus 로고    scopus 로고
    • Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst
    • Han Z, Qiu F, Eisenberg R, Holland PL, Krauss TD. 2012 Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324. (doi:10.1126/science.1227775)
    • (2012) Science , vol.338 , pp. 1321-1324
    • Han, Z.1    Qiu, F.2    Eisenberg, R.3    Holland, P.L.4    Krauss, T.D.5
  • 9
    • 77956226822 scopus 로고    scopus 로고
    • Catalytic hydrogen production at cobalt centres
    • Losse S, Vos JG, Rau S. 2010 Catalytic hydrogen production at cobalt centres. Coord. Chem. Rev. 254, 2492–2504. (doi:10.1016/j.ccr.2010.06.004)
    • (2010) Coord. Chem. Rev , vol.254 , pp. 2492-2504
    • Losse, S.1    Vos, J.G.2    Rau, S.3
  • 10
    • 84874473296 scopus 로고    scopus 로고
    • Structure–function analyses of solar fuels catalysts using in situ X-ray scattering
    • Mulfort KL, Mukherjee A, Kokhan O, Du P, Tiede DM. 2013 Structure–function analyses of solar fuels catalysts using in situ X-ray scattering. Chem. Soc. Rev. 42, 2215–2227. (doi:10.1039/C2CS35247H)
    • (2013) Chem. Soc. Rev , vol.42 , pp. 2215-2227
    • Mulfort, K.L.1    Mukherjee, A.2    Kokhan, O.3    Du, P.4    Tiede, D.M.5
  • 11
    • 77949399457 scopus 로고    scopus 로고
    • Solar driven water oxidation by a bioinspired manganese molecular catalyst
    • Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L. 2010 Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 2892–2894. (doi:10.1021/ja910055a)
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 2892-2894
    • Brimblecombe, R.1    Koo, A.2    Dismukes, G.C.3    Swiegers, G.F.4    Spiccia, L.5
  • 12
    • 77957673474 scopus 로고    scopus 로고
    • A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO 2
    • Li L, Duan L, Xu Y, Gorlov M, Hagfeldt A, Sun L. 2010 A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO 2. Chem. Commun. 46, 7307–7309. (doi:10.1039/C0CC01828G)
    • (2010) Chem. Commun , vol.46 , pp. 7307-7309
    • Li, L.1    Duan, L.2    Xu, Y.3    Gorlov, M.4    Hagfeldt, A.5    Sun, L.6
  • 14
    • 0006483573 scopus 로고
    • A low-cost, highefficiency solar cell based on dye-sensitized colloidal titanium dioxide films
    • O’Regan B, Graetzel M. 1991 A low-cost, highefficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353, 737–740. (doi:10.1038/353737a0)
    • (1991) Nature , vol.353 , pp. 737-740
    • O’Regan, B.1    Graetzel, M.2
  • 15
    • 77953897355 scopus 로고    scopus 로고
    • Reversible visible-light photooxidation of an oxomanganese water-oxidation catalyst covalently anchored to TiO2 nanoparticles
    • Li G, Sproviero EM, McNamara WR, Snoeberger RC, Crabtree RH, Brudvig GW, Batista VS. 2010 Reversible visible-light photooxidation of an oxomanganese water-oxidation catalyst covalently anchored to TiO2 nanoparticles. J. Phys. Chem. B 114, 14 214–14 222. (doi:10.1021/jp908925z)
    • (2010) J. Phys. Chem. B , vol.114 , Issue.14 , pp. 214
    • Li, G.1    Sproviero, E.M.2    McNamara, W.R.3    Snoeberger, R.C.4    Crabtree, R.H.5    Brudvig, G.W.6    Batista, V.S.7
  • 16
    • 84870337790 scopus 로고    scopus 로고
    • Light-driven electron transfer between a photosensitizer and a proton-reducing catalyst co-adsorbed to NiO
    • Gardner JM, Beyler M, Karnahl M, Tschierlei S, Ott S, Hammarström L. 2012 Light-driven electron transfer between a photosensitizer and a proton-reducing catalyst co-adsorbed to NiO. J. Am. Chem. Soc. 134, 19 322–19 325. (doi:10.1021/ja3082268)
    • (2012) J. Am. Chem. Soc , vol.134 , Issue.19 , pp. 322-419
    • Gardner, J.M.1    Beyler, M.2    Karnahl, M.3    Tschierlei, S.4    Ott, S.5    Hammarström, L.6
  • 17
    • 84867366814 scopus 로고    scopus 로고
    • Photodriven charge separation dynamics in CdSe/ ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production
    • Huang J, Mulfort KL, Du P, Chen LX. 2012 Photodriven charge separation dynamics in CdSe/ ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 134, 16 472–16 475. (doi:10.1021/ja3062584)
    • (2012) J. Am. Chem. Soc , vol.134 , Issue.16 , pp. 472-516
    • Huang, J.1    Mulfort, K.L.2    Du, P.3    Chen, L.X.4
  • 18
    • 79251511541 scopus 로고    scopus 로고
    • Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle
    • Lakadamyali F, Reisner E. 2011 Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chem. Commun. 47, 1695–1697. (doi:10.1039/C0CC04658B)
    • (2011) Chem. Commun , vol.47 , pp. 1695-1697
    • Lakadamyali, F.1    Reisner, E.2
  • 19
  • 20
    • 84866874701 scopus 로고    scopus 로고
    • Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator
    • Zhao Y. 2012 Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proc. Natl Acad. Sci. USA 109, 15 612–15 616. (doi:10.1073/pnas.1118339109)
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , Issue.15 , pp. 612-615
    • Zhao, Y.1
  • 21
    • 84879012512 scopus 로고    scopus 로고
    • Visible light induced hole transport from sensitizer to Co3O4 water oxidation catalyst across nanoscale silica barrier with embedded molecular wires
    • Agiral A, Soo HS, Frei H. 2013 Visible light induced hole transport from sensitizer to Co3O4 water oxidation catalyst across nanoscale silica barrier with embedded molecular wires. Chem. Mater. 25, 2264–2273. (doi:10.1021/cm400759f)
    • (2013) Chem. Mater , vol.25 , pp. 2264-2273
    • Agiral, A.1    Soo, H.S.2    Frei, H.3
  • 22
    • 33750331153 scopus 로고    scopus 로고
    • Lightdriven water splitting for (Bio-)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device
    • Badura A, Esper B, Ataka K, Grunwald C, Woell C, Kuhlmann J, Heberle J, Rögner M. 2006 Lightdriven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 1385–1390. (doi:10.1562/2006-07-14-RC-969)
    • (2006) Photochem. Photobiol , vol.82 , pp. 1385-1390
    • Badura, A.1    Esper, B.2    Ataka, K.3    Grunwald, C.4    Woell, C.5    Kuhlmann, J.6    Heberle, J.7    Rögner, M.8
  • 23
    • 78349259311 scopus 로고    scopus 로고
    • Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production
    • Brown KA, Dayal S, Ai X, Rumbles G, King PW. 2010 Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132, 9672–9680. (doi:10.1021/ja101031r)
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 9672-9680
    • Brown, K.A.1    Dayal, S.2    Ai, X.3    Rumbles, G.4    King, P.W.5
  • 24
    • 84896537184 scopus 로고    scopus 로고
    • Electron transfer kinetics in CdS nanorod-[FeFe] hydrogenase complexes and implications for photochemical H2 generation
    • Wilker MB, Shinopoulos KE, Brown KA, Mulder DW, King PW, Dukovic G. 2014 Electron transfer kinetics in CdS nanorod-[FeFe] hydrogenase complexes and implications for photochemical H2 generation. J. Am. Chem. Soc. 136, 4316–4324. (doi:10.1021/ja413001p)
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 4316-4324
    • Wilker, M.B.1    Shinopoulos, K.E.2    Brown, K.A.3    Mulder, D.W.4    King, P.W.5    Dukovic, G.6
  • 27
    • 73249146231 scopus 로고    scopus 로고
    • Visible light-driven H2 production by hydrogenases attached to dyesensitized TiO2 nanoparticles
    • Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA. 2009 Visible light-driven H2 production by hydrogenases attached to dyesensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18 457–18 466. (doi:10.1021/ja907923r)
    • (2009) J. Am. Chem. Soc , vol.131 , Issue.18 , pp. 457-518
    • Reisner, E.1    Powell, D.J.2    Cavazza, C.3    Fontecilla-Camps, J.C.4    Armstrong, F.A.5
  • 28
    • 80054737694 scopus 로고    scopus 로고
    • Nature-driven photochemistry for catalytic solar hydrogen production: A photosystem I–transition metal catalyst hybrid
    • Utschig LM, Silver SC, Mulfort KL, Tiede DM. 2011 Nature-driven photochemistry for catalytic solar hydrogen production: a photosystem I–transition metal catalyst hybrid. J. Am. Chem. Soc. 133, 16 334–16 337. (doi:10.1021/ja206012r)
    • (2011) J. Am. Chem. Soc , vol.133 , Issue.16 , pp. 334-416
    • Utschig, L.M.1    Silver, S.C.2    Mulfort, K.L.3    Tiede, D.M.4
  • 29
    • 84866245294 scopus 로고    scopus 로고
    • Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic
    • Roy A, Madden C, Ghirlanda G. 2012 Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic. Chem. Commun. 48, 9816–9818. (doi:10.1039/c2cc34470j)
    • (2012) Chem. Commun , vol.48 , pp. 9816-9818
    • Roy, A.1    Madden, C.2    Ghirlanda, G.3
  • 30
    • 84879886576 scopus 로고    scopus 로고
    • Biomimetic assembly and activation of [FeFe]-hydrogenases
    • Berggren G et al. 2013 Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69. (doi:10.1038/nature12239)
    • (2013) Nature , vol.499 , pp. 66-69
    • Berggren, G.1
  • 31
    • 84902241357 scopus 로고    scopus 로고
    • Low temperature assembly of functional 3D DNA–PNA–protein complexes
    • Flory JD et al. 2014 Low temperature assembly of functional 3D DNA–PNA–protein complexes. J. Am. Chem. Soc. 136, 8283–8295. (doi:10.1021/ja501228c)
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 8283-8295
    • Flory, J.D.1
  • 32
    • 36849041652 scopus 로고    scopus 로고
    • Synthetic hydrogenases: Incorporation of an iron carbonyl thiolate into a designed peptide
    • Jones AK, Lichtenstein BR, Dutta A, Gordon G, Dutton PL. 2007 Synthetic hydrogenases: incorporation of an iron carbonyl thiolate into a designed peptide. J. Am. Chem. Soc. 129, 14 844–14 845. (doi:10.1021/ja075116a)
    • (2007) J. Am. Chem. Soc , vol.129 , Issue.14 , pp. 844-914
    • Jones, A.K.1    Lichtenstein, B.R.2    Dutta, A.3    Gordon, G.4    Dutton, P.L.5
  • 33
    • 0000289261 scopus 로고
    • Photoelectrochemical pumping of enzymic carbon dioxide reduction
    • Parkinson BA, Weaver PF. 1984 Photoelectrochemical pumping of enzymic carbon dioxide reduction. Nature 309, 148–149. (doi:10.1038/309148a0)
    • (1984) Nature , vol.309 , pp. 148-149
    • Parkinson, B.A.1    Weaver, P.F.2
  • 34
    • 84871579091 scopus 로고    scopus 로고
    • Molecular engineering of a cobalt-based electrocatalytic nanomaterial for hydrogen evolution under fully aqueous conditions
    • Andreiadis ES et al. 2013 Molecular engineering of a cobalt-based electrocatalytic nanomaterial for hydrogen evolution under fully aqueous conditions. Nat. Chem. 5, 48–53. (doi:10.1038/nchem.1481)
    • (2013) Nat. Chem , vol.5 , pp. 48-53
    • Andreiadis, E.S.1
  • 35
    • 84890525689 scopus 로고    scopus 로고
    • Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production
    • Blakemore JD, Gupta A, Warren JJ, Brunschwig BS, Gray HB. 2013 Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production. J. Am. Chem. Soc. 135, 18 288–18 291. (doi:10.1021/ja4099609)
    • (2013) J. Am. Chem. Soc , vol.135 , Issue.18 , pp. 288-318
    • Blakemore, J.D.1    Gupta, A.2    Warren, J.J.3    Brunschwig, B.S.4    Gray, H.B.5
  • 36
    • 71549138815 scopus 로고    scopus 로고
    • Nailing down nickel for electrocatalysis
    • Hambourger M, Moore TA. 2009 Nailing down nickel for electrocatalysis. Science 326, 1355–1356. (doi:10.1126/science.1183836)
    • (2009) Science , vol.326 , pp. 1355-1356
    • Hambourger, M.1    Moore, T.A.2
  • 37
    • 84866689924 scopus 로고    scopus 로고
    • Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using ‘smart’ electrodes
    • Yao SA, Ruther RE, Zhang L, Franking RA, Hamers RJ, Berry JF. 2012 Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using ‘smart’ electrodes. J. Am. Chem. Soc. 134, 15 632–15 635. (doi:10.1021/ja304783j)
    • (2012) J. Am. Chem. Soc , vol.134 , Issue.15 , pp. 632-715
    • Yao, S.A.1    Ruther, R.E.2    Zhang, L.3    Franking, R.A.4    Hamers, R.J.5    Berry, J.F.6
  • 38
    • 84904131526 scopus 로고    scopus 로고
    • Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination
    • Krawicz A, Cedeno D, Moore GF. 2014 Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination. Phys. Chem. Chem. Phys. 16, 15 718–15 824. (doi:10.1039/C4CP00495G)
    • (2014) Phys. Chem. Chem. Phys , vol.16 , Issue.15 , pp. 718-815
    • Krawicz, A.1    Cedeno, D.2    Moore, G.F.3
  • 39
    • 84882268766 scopus 로고    scopus 로고
    • Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor
    • Krawicz A, Yang J, Anzenberg E, Yano J, Sharp ID, Moore GF. 2013 Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor. J. Am. Chem. Soc. 135, 11 861–11 868. (doi:10.1021/ja404158r)
    • (2013) J. Am. Chem. Soc , vol.135 , Issue.11 , pp. 861-911
    • Krawicz, A.1    Yang, J.2    Anzenberg, E.3    Yano, J.4    Sharp, I.D.5    Moore, G.F.6
  • 40
    • 84874165017 scopus 로고    scopus 로고
    • A noble-metal-free hydrogen evolution catalyst grafted to visible lightabsorbing semiconductors
    • Moore GF, Sharp ID. 2013 A noble-metal-free hydrogen evolution catalyst grafted to visible lightabsorbing semiconductors. J. Phys. Chem. Lett. 4, 568–572. (doi:10.1021/jz400028z)
    • (2013) J. Phys. Chem. Lett , vol.4 , pp. 568-572
    • Moore, G.F.1    Sharp, I.D.2
  • 41
    • 0035891138 scopus 로고    scopus 로고
    • Photoelectrochemical cells
    • Gratzel M. 2001 Photoelectrochemical cells. Nature 414, 338–344. (doi:10.1038/35104607)
    • (2001) Nature , vol.414 , pp. 338-344
    • Gratzel, M.1
  • 42
    • 43949109590 scopus 로고    scopus 로고
    • Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell
    • Barton EE, Rampulla DM, Bocarsly AB. 2008 Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344. (doi:10.1021/ja0776327)
    • (2008) J. Am. Chem. Soc , vol.130 , pp. 6342-6344
    • Barton, E.E.1    Rampulla, D.M.2    Bocarsly, A.B.3
  • 43
    • 79551702472 scopus 로고    scopus 로고
    • Photoelectrochemical hydrogen evolution using Si microwire arrays
    • Boettcher SW et al. 2011 Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219. (doi:10.1021/ja108801m)
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 1216-1219
    • Boettcher, S.W.1
  • 44
    • 79957528668 scopus 로고    scopus 로고
    • Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution
    • Hou Y et al. 2011 Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434–438. (doi:10.1038/nmat3008)
    • (2011) Nat. Mater , vol.10 , pp. 434-438
    • Hou, Y.1
  • 45
    • 80555150640 scopus 로고    scopus 로고
    • Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
    • Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG. 2011 Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648. (doi:10.1126/science.1209816)
    • (2011) Science , vol.334 , pp. 645-648
    • Reece, S.Y.1    Hamel, J.A.2    Sung, K.3    Jarvi, T.D.4    Esswein, A.J.5    Pijpers, J.6    Nocera, D.G.7
  • 46
    • 82555168488 scopus 로고    scopus 로고
    • Surfactant-free, largescale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-lightdriven hydrogen production from water reduction
    • Sun J, Liu C, Yang P. 2011 Surfactant-free, largescale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-lightdriven hydrogen production from water reduction. J. Am. Chem. Soc. 133, 19 306–19 309. (doi:10.1021/ja2083398)
    • (2011) J. Am. Chem. Soc , vol.133 , Issue.19 , pp. 306-319
    • Sun, J.1    Liu, C.2    Yang, P.3
  • 47
    • 77955913741 scopus 로고    scopus 로고
    • Photoreduction of CO2 on p-type silicon using Re(Bipy-But)(CO)3Cl: Photovoltages exceeding 600 mV for the selective reduction of CO2 to CO
    • Kumar B, Smieja JM, Kubiak CP. 2010 Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J. Phys. Chem. C 114, 14 220–14 223. (doi:10.1021/jp105171b)
    • (2010) J. Phys. Chem. C , vol.114 , Issue.14 , pp. 220-314
    • Kumar, B.1    Smieja, J.M.2    Kubiak, C.P.3
  • 48
    • 0036589258 scopus 로고    scopus 로고
    • Organometallic chemistry on silicon and germanium surfaces
    • Buriak JM. 2002 Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102, 1271–1308. (doi:10.1021/cr000064s)
    • (2002) Chem. Rev , vol.102 , pp. 1271-1308
    • Buriak, J.M.1
  • 49
    • 0034205444 scopus 로고    scopus 로고
    • Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111)
    • Cicero RL, Linford MR, Chidsey CED. 2000 Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111). Langmuir 16, 5688–5695. (doi:10.1021/la9911990)
    • (2000) Langmuir , vol.16 , pp. 5688-5695
    • Cicero, R.L.1    Linford, M.R.2    Chidsey, C.3
  • 50
    • 77952868769 scopus 로고    scopus 로고
    • Assessment of the passivation capabilities of two different covalent chemical modifications on GaP(100)
    • Richards D, Zemlyanov D, Ivanisevic A. 2010 Assessment of the passivation capabilities of two different covalent chemical modifications on GaP(100). Langmuir 26, 8141–8146. (doi:10.1021/la904451x)
    • (2010) Langmuir , vol.26 , pp. 8141-8146
    • Richards, D.1    Zemlyanov, D.2    Ivanisevic, A.3
  • 51
    • 33846138950 scopus 로고    scopus 로고
    • Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting
    • Stachowiak TB, Svec F, Fréchet JMJ. 2006 Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting. Chem. Mater. 18, 5950–5957. (doi:10.1021/cm0617034)
    • (2006) Chem. Mater , vol.18 , pp. 5950-5957
    • Stachowiak, T.B.1    Svec, F.2    Fréchet, J.3
  • 52
    • 65249142099 scopus 로고    scopus 로고
    • Structured and gradient polymer brushes from biphenylthiol self-assembled monolayers by self-initiated photografting and photopolymerization (SIPGP)
    • Steenackers M, Küller A, Stoycheva S, Grunze M, Jordan R. 2009 Structured and gradient polymer brushes from biphenylthiol self-assembled monolayers by self-initiated photografting and photopolymerization (SIPGP). Langmuir 25, 2225–2231. (doi:10.1021/la803386c)
    • (2009) Langmuir , vol.25 , pp. 2225-2231
    • Steenackers, M.1    Küller, A.2    Stoycheva, S.3    Grunze, M.4    Jordan, R.5
  • 53
    • 0032620079 scopus 로고    scopus 로고
    • Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study
    • Terry J, Linford MR, Wigren C, Cao R, Pianetta P, Chidsey CED. 1999 Alkyl-terminated Si(111) surfaces: a high-resolution, core level photoelectron spectroscopy study. J. Appl. Phys. 85, 213–221. (doi:10.1063/1.369473)
    • (1999) J. Appl. Phys , vol.85 , pp. 213-221
    • Terry, J.1    Linford, M.R.2    Wigren, C.3    Cao, R.4    Pianetta, P.5    Chidsey, C.6
  • 54
    • 77950255712 scopus 로고    scopus 로고
    • UV-induced grafting of alkenes to silicon surfaces: Photoemission versus excitons
    • Wang X, Ruther RE, Streifer JA, Hamers RJ. 2010 UV-induced grafting of alkenes to silicon surfaces: photoemission versus excitons. J. Am. Chem. Soc. 132, 4048–4049. (doi:10.1021/ja910498z)
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 4048-4049
    • Wang, X.1    Ruther, R.E.2    Streifer, J.A.3    Hamers, R.J.4
  • 55
    • 84859141793 scopus 로고    scopus 로고
    • Patterned polymer brushes
    • Chen T, Amin I, Jordan R. 2012 Patterned polymer brushes. Chem. Soc. Rev. 41, 3280–3296. (doi:10.1039/c2cs15225h)
    • (2012) Chem. Soc. Rev , vol.41 , pp. 3280-3296
    • Chen, T.1    Amin, I.2    Jordan, R.3
  • 56
    • 80051636877 scopus 로고    scopus 로고
    • A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s21 for H2 production
    • Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL. 2011 A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s21 for H2 production. Science 333, 863–866. (doi:10.1126/science.1205864)
    • (2011) Science , vol.333 , pp. 863-866
    • Helm, M.L.1    Stewart, M.P.2    Bullock, R.M.3    Dubois, M.R.4    Dubois, D.L.5
  • 57
    • 79954566267 scopus 로고    scopus 로고
    • Ni(PPh2NC6H4X2)2]2þ complexes as electrocatalysts for H2 production: Effect of substituents, acids, and water on catalytic rates
    • Kilgore UJ et al. 2011 [Ni(PPh2NC6H4X2)2]2þ complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates. J. Am. Chem. Soc. 133, 5861–5872. (doi:10.1021/ja109755f)
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 5861-5872
    • Kilgore, U.J.1
  • 58
    • 30744464865 scopus 로고    scopus 로고
    • Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays
    • Wilson AD, Newell RH, McNevin MJ, Muckerman JT, Rakowski DuBois M, DuBois DL. 2006 Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J. Am. Chem. Soc. 128, 358–366. (doi:10.1021/ja056442y)
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 358-366
    • Wilson, A.D.1    Newell, R.H.2    McNevin, M.J.3    MuCkerman, J.T.4    Rakowski Dubois, M.5    Dubois, D.L.6
  • 61
    • 84990205575 scopus 로고    scopus 로고
    • Using molecular design to control the performance of hydrogen-producing polymerbrush- modified photocathodes
    • Cedeno D, Krawicz A, Doak P, Yu M, Neaton JB, Moore GF. 2014 Using molecular design to control the performance of hydrogen-producing polymerbrush- modified photocathodes. J. Phys. Chem. Lett. 5, 3222–3226. (doi:10.1021/jz5016394)
    • (2014) J. Phys. Chem. Lett , vol.5 , pp. 3222-3226
    • Cedeno, D.1    Krawicz, A.2    Doak, P.3    Yu, M.4    Neaton, J.B.5    Moore, G.F.6
  • 62
    • 81255210410 scopus 로고    scopus 로고
    • Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime
    • Muckerman JT, Fujita E. 2011 Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime. Chem. Commun. 47, 12 456–12 458. (doi:10.1039/c1cc15330g)
    • (2011) Chem. Commun , vol.47 , Issue.12 , pp. 456-512
    • Muckerman, J.T.1    Fujita, E.2
  • 63
    • 80155177816 scopus 로고    scopus 로고
    • Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes
    • Solis BH, Hammes-Schiffer S. 2011 Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes. Inorg. Chem. 50, 11 252–11 262. (doi:10.1021/ic201842v)
    • (2011) Inorg. Chem , vol.50 , Issue.11 , pp. 252-311
    • Solis, B.H.1    Hammes-Schiffer, S.2
  • 64
    • 84878884738 scopus 로고    scopus 로고
    • Photoinitiated multistep charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer-cobaloxime assembly
    • Veldkamp BS, Han W-S, Dyar SM, Eaton SW, Ratner MA, Wasielewski MR. 2013 Photoinitiated multistep charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer-cobaloxime assembly. Energy Environ. Sci. 6, 1917–1928. (doi:10.1039/C3EE40378E)
    • (2013) Energy Environ. Sci , vol.6 , pp. 1917-1928
    • Veldkamp, B.S.1    Han, W.-S.2    Dyar, S.M.3    Eaton, S.W.4    Ratner, M.A.5    Wasielewski, M.R.6
  • 65
    • 84875652261 scopus 로고    scopus 로고
    • Artificial photosynthesis as a frontier technology for energy sustainability
    • Faunce T et al. 2013 Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ. Sci. 6, 1074–1076. (doi:10.1039/C3EE40534F)
    • (2013) Energy Environ. Sci , vol.6 , pp. 1074-1076
    • Faunce, T.1
  • 66
    • 84875643352 scopus 로고    scopus 로고
    • Energy and environment policy case for a global project on artificial photosynthesis
    • Faunce TA et al. 2013 Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698. (doi:10.1039/C3EE00063J)
    • (2013) Energy Environ. Sci , vol.6 , pp. 695-698
    • Faunce, T.A.1
  • 67
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
    • Blankenship RE et al. 2011 Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809. (doi:10.1126/science.1200165)
    • (2011) Science , vol.332 , pp. 805-809
    • Blankenship, R.E.1
  • 68
    • 79960527085 scopus 로고    scopus 로고
    • Shedding light on solar fuel efficiencies
    • Hammarström L, Winkler JR, Gray HB, Styring S. 2011 Shedding light on solar fuel efficiencies. Science 333, 288. (doi:10.1126/science.333.6040.288-a)
    • (2011) Science , vol.333 , pp. 288
    • Hammarström, L.1    Winkler, J.R.2    Gray, H.B.3    Styring, S.4
  • 69
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: Chemical challenges in solar energy utilization
    • Lewis NS, Nocera DG. 2006 Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15 729–15 735. (doi:10.1073/pnas.0603395103)
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , Issue.15 , pp. 729-815
    • Lewis, N.S.1    Nocera, D.G.2
  • 70
    • 79959818384 scopus 로고    scopus 로고
    • Energy conversion in photosynthesis: A paradigm for solar fuel production
    • Moore GF, Brudvig GW. 2011 Energy conversion in photosynthesis: a paradigm for solar fuel production. Annu. Rev. Condens. Matter Phys. 2, 303–327. (doi:10.1146/annurev-conmatphys-062910-140503)
    • (2011) Annu. Rev. Condens. Matter Phys , vol.2 , pp. 303-327
    • Moore, G.F.1    Brudvig, G.W.2
  • 72
    • 57649232342 scopus 로고    scopus 로고
    • Living healthy on a dying planet
    • Nocera DG. 2009 Living healthy on a dying planet. Chem. Soc. Rev. 38, 13–15. (doi:10.1039/b820660k)
    • (2009) Chem. Soc. Rev , vol.38 , pp. 13-15
    • Nocera, D.G.1
  • 74
    • 84874458964 scopus 로고    scopus 로고
    • Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells
    • Swierk JR, Mallouk TE. 2013 Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev. 42, 2357–2387. (doi:10.1039/C2CS35246J)
    • (2013) Chem. Soc. Rev , vol.42 , pp. 2357-2387
    • Swierk, J.R.1    Mallouk, T.E.2
  • 75
    • 78449289476 scopus 로고    scopus 로고
    • Solar water splitting cells
    • Walter MG et al. 2010 Solar water splitting cells. Chem. Rev. 110, 6446–6473. (doi:10.1021/cr1002326)
    • (2010) Chem. Rev , vol.110 , pp. 6446-6473
    • Walter, M.G.1
  • 76
    • 84857517594 scopus 로고    scopus 로고
    • Recent advances in hybrid photocatalysts for solar fuel production
    • Tran PD, Wong LH, Barber J, Loo JSC. 2012 Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5, 5902–5918. (doi:10.1039/c2ee02849b)
    • (2012) Energy Environ. Sci , vol.5 , pp. 5902-5918
    • Tran, P.D.1    Wong, L.H.2    Barber, J.3    Loo, J.4
  • 77
    • 67849115757 scopus 로고    scopus 로고
    • Powering the planet with solar fuel
    • Gray HB. 2009 Powering the planet with solar fuel. Nat. Chem. 1, 112. (doi:10.1038/nchem.206)
    • (2009) Nat. Chem , vol.1 , pp. 112
    • Gray, H.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.