-
1
-
-
0011479043
-
Photochemical conversion and storage of solar energy
-
Bolton JR, Hall DO. 1979 Photochemical conversion and storage of solar energy. Annu. Rev. Energy 4, 353–401. (doi:10.1146/annurev.eg.04.110179.002033)
-
(1979)
Annu. Rev. Energy
, vol.4
, pp. 353-401
-
-
Bolton, J.R.1
Hall, D.O.2
-
2
-
-
0001436585
-
The photochemistry of the future
-
Ciamician G. 1912 The photochemistry of the future. Science 36, 385–394. (doi:10.1126/science.36.926.385)
-
(1912)
Science
, vol.36
, pp. 385-394
-
-
Ciamician, G.1
-
3
-
-
0023040513
-
Surface functionalization of electrodes with molecular reagents
-
Wrighton MS. 1986 Surface functionalization of electrodes with molecular reagents. Science 231, 32–37. (doi:10.1126/science.231.4733.32)
-
(1986)
Science
, vol.231
, pp. 32-37
-
-
Wrighton, M.S.1
-
4
-
-
0000574755
-
Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen
-
Bard AJ, Fox MA. 1995 Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145. (doi:10.1021/ar00051a007)
-
(1995)
Acc. Chem. Res
, vol.28
, pp. 141-145
-
-
Bard, A.J.1
Fox, M.A.2
-
5
-
-
0017058392
-
Evolution of enzyme function and the development of catalytic efficiency
-
Albery WJ, Knowles JR. 1976 Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640. (doi:10.1021/bi00670a032)
-
(1976)
Biochemistry
, vol.15
, pp. 5631-5640
-
-
Albery, W.J.1
Knowles, J.R.2
-
6
-
-
80052154091
-
Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes
-
Armstrong FA, Hirst J. 2011 Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14 049–14 054. (doi:10.1073/pnas.1103697108)
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, Issue.14
, pp. 049-114
-
-
Armstrong, F.A.1
Hirst, J.2
-
7
-
-
23744479088
-
Some general principles for designing electrocatalysts with hydrogenase activity
-
Artero V, Fontecave M. 2005 Some general principles for designing electrocatalysts with hydrogenase activity. Coord. Chem. Rev. 249, 1518–1535. (doi:10.1016/j.ccr.2005.01.014)
-
(2005)
Coord. Chem. Rev
, vol.249
, pp. 1518-1535
-
-
Artero, V.1
Fontecave, M.2
-
8
-
-
84870667497
-
Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst
-
Han Z, Qiu F, Eisenberg R, Holland PL, Krauss TD. 2012 Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324. (doi:10.1126/science.1227775)
-
(2012)
Science
, vol.338
, pp. 1321-1324
-
-
Han, Z.1
Qiu, F.2
Eisenberg, R.3
Holland, P.L.4
Krauss, T.D.5
-
9
-
-
77956226822
-
Catalytic hydrogen production at cobalt centres
-
Losse S, Vos JG, Rau S. 2010 Catalytic hydrogen production at cobalt centres. Coord. Chem. Rev. 254, 2492–2504. (doi:10.1016/j.ccr.2010.06.004)
-
(2010)
Coord. Chem. Rev
, vol.254
, pp. 2492-2504
-
-
Losse, S.1
Vos, J.G.2
Rau, S.3
-
10
-
-
84874473296
-
Structure–function analyses of solar fuels catalysts using in situ X-ray scattering
-
Mulfort KL, Mukherjee A, Kokhan O, Du P, Tiede DM. 2013 Structure–function analyses of solar fuels catalysts using in situ X-ray scattering. Chem. Soc. Rev. 42, 2215–2227. (doi:10.1039/C2CS35247H)
-
(2013)
Chem. Soc. Rev
, vol.42
, pp. 2215-2227
-
-
Mulfort, K.L.1
Mukherjee, A.2
Kokhan, O.3
Du, P.4
Tiede, D.M.5
-
11
-
-
77949399457
-
Solar driven water oxidation by a bioinspired manganese molecular catalyst
-
Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L. 2010 Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 2892–2894. (doi:10.1021/ja910055a)
-
(2010)
J. Am. Chem. Soc
, vol.132
, pp. 2892-2894
-
-
Brimblecombe, R.1
Koo, A.2
Dismukes, G.C.3
Swiegers, G.F.4
Spiccia, L.5
-
12
-
-
77957673474
-
A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO 2
-
Li L, Duan L, Xu Y, Gorlov M, Hagfeldt A, Sun L. 2010 A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO 2. Chem. Commun. 46, 7307–7309. (doi:10.1039/C0CC01828G)
-
(2010)
Chem. Commun
, vol.46
, pp. 7307-7309
-
-
Li, L.1
Duan, L.2
Xu, Y.3
Gorlov, M.4
Hagfeldt, A.5
Sun, L.6
-
13
-
-
67749124322
-
Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell
-
Youngblood WJ, Lee S-HA, Kobayashi Y, Hernandez- Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE. 2009 Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131, 926–927. (doi:10.1021/ja809108y)
-
(2009)
J. Am. Chem. Soc
, vol.131
, pp. 926-927
-
-
Youngblood, W.J.1
Lee, S.-H.2
Kobayashi, Y.3
Hernandez- Pagan, E.A.4
Hoertz, P.G.5
Moore, T.A.6
Moore, A.L.7
Gust, D.8
Mallouk, T.E.9
-
14
-
-
0006483573
-
A low-cost, highefficiency solar cell based on dye-sensitized colloidal titanium dioxide films
-
O’Regan B, Graetzel M. 1991 A low-cost, highefficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353, 737–740. (doi:10.1038/353737a0)
-
(1991)
Nature
, vol.353
, pp. 737-740
-
-
O’Regan, B.1
Graetzel, M.2
-
15
-
-
77953897355
-
Reversible visible-light photooxidation of an oxomanganese water-oxidation catalyst covalently anchored to TiO2 nanoparticles
-
Li G, Sproviero EM, McNamara WR, Snoeberger RC, Crabtree RH, Brudvig GW, Batista VS. 2010 Reversible visible-light photooxidation of an oxomanganese water-oxidation catalyst covalently anchored to TiO2 nanoparticles. J. Phys. Chem. B 114, 14 214–14 222. (doi:10.1021/jp908925z)
-
(2010)
J. Phys. Chem. B
, vol.114
, Issue.14
, pp. 214
-
-
Li, G.1
Sproviero, E.M.2
McNamara, W.R.3
Snoeberger, R.C.4
Crabtree, R.H.5
Brudvig, G.W.6
Batista, V.S.7
-
16
-
-
84870337790
-
Light-driven electron transfer between a photosensitizer and a proton-reducing catalyst co-adsorbed to NiO
-
Gardner JM, Beyler M, Karnahl M, Tschierlei S, Ott S, Hammarström L. 2012 Light-driven electron transfer between a photosensitizer and a proton-reducing catalyst co-adsorbed to NiO. J. Am. Chem. Soc. 134, 19 322–19 325. (doi:10.1021/ja3082268)
-
(2012)
J. Am. Chem. Soc
, vol.134
, Issue.19
, pp. 322-419
-
-
Gardner, J.M.1
Beyler, M.2
Karnahl, M.3
Tschierlei, S.4
Ott, S.5
Hammarström, L.6
-
17
-
-
84867366814
-
Photodriven charge separation dynamics in CdSe/ ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production
-
Huang J, Mulfort KL, Du P, Chen LX. 2012 Photodriven charge separation dynamics in CdSe/ ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 134, 16 472–16 475. (doi:10.1021/ja3062584)
-
(2012)
J. Am. Chem. Soc
, vol.134
, Issue.16
, pp. 472-516
-
-
Huang, J.1
Mulfort, K.L.2
Du, P.3
Chen, L.X.4
-
18
-
-
79251511541
-
Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle
-
Lakadamyali F, Reisner E. 2011 Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chem. Commun. 47, 1695–1697. (doi:10.1039/C0CC04658B)
-
(2011)
Chem. Commun
, vol.47
, pp. 1695-1697
-
-
Lakadamyali, F.1
Reisner, E.2
-
19
-
-
79959815839
-
A visible light water-splitting cell with a photoanode formed by codeposition of a highpotential porphyrin and an iridium water-oxidation catalyst
-
Moore GF, Blakemore JD, Milot RL, Hull JF, Song H-E, Cai L, Schmuttenmaer CA, Crabtree RH, Brudvig GW. 2011 A visible light water-splitting cell with a photoanode formed by codeposition of a highpotential porphyrin and an iridium water-oxidation catalyst. Energy Environ. Sci. 4, 2389–2392. (doi:10.1039/C1EE01037A)
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 2389-2392
-
-
Moore, G.F.1
Blakemore, J.D.2
Milot, R.L.3
Hull, J.F.4
Song, H.-E.5
Cai, L.6
Schmuttenmaer, C.A.7
Crabtree, R.H.8
Brudvig, G.W.9
-
20
-
-
84866874701
-
Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator
-
Zhao Y. 2012 Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proc. Natl Acad. Sci. USA 109, 15 612–15 616. (doi:10.1073/pnas.1118339109)
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, Issue.15
, pp. 612-615
-
-
Zhao, Y.1
-
21
-
-
84879012512
-
Visible light induced hole transport from sensitizer to Co3O4 water oxidation catalyst across nanoscale silica barrier with embedded molecular wires
-
Agiral A, Soo HS, Frei H. 2013 Visible light induced hole transport from sensitizer to Co3O4 water oxidation catalyst across nanoscale silica barrier with embedded molecular wires. Chem. Mater. 25, 2264–2273. (doi:10.1021/cm400759f)
-
(2013)
Chem. Mater
, vol.25
, pp. 2264-2273
-
-
Agiral, A.1
Soo, H.S.2
Frei, H.3
-
22
-
-
33750331153
-
Lightdriven water splitting for (Bio-)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device
-
Badura A, Esper B, Ataka K, Grunwald C, Woell C, Kuhlmann J, Heberle J, Rögner M. 2006 Lightdriven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 1385–1390. (doi:10.1562/2006-07-14-RC-969)
-
(2006)
Photochem. Photobiol
, vol.82
, pp. 1385-1390
-
-
Badura, A.1
Esper, B.2
Ataka, K.3
Grunwald, C.4
Woell, C.5
Kuhlmann, J.6
Heberle, J.7
Rögner, M.8
-
23
-
-
78349259311
-
Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production
-
Brown KA, Dayal S, Ai X, Rumbles G, King PW. 2010 Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132, 9672–9680. (doi:10.1021/ja101031r)
-
(2010)
J. Am. Chem. Soc
, vol.132
, pp. 9672-9680
-
-
Brown, K.A.1
Dayal, S.2
Ai, X.3
Rumbles, G.4
King, P.W.5
-
24
-
-
84896537184
-
Electron transfer kinetics in CdS nanorod-[FeFe] hydrogenase complexes and implications for photochemical H2 generation
-
Wilker MB, Shinopoulos KE, Brown KA, Mulder DW, King PW, Dukovic G. 2014 Electron transfer kinetics in CdS nanorod-[FeFe] hydrogenase complexes and implications for photochemical H2 generation. J. Am. Chem. Soc. 136, 4316–4324. (doi:10.1021/ja413001p)
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 4316-4324
-
-
Wilker, M.B.1
Shinopoulos, K.E.2
Brown, K.A.3
Mulder, D.W.4
King, P.W.5
Dukovic, G.6
-
25
-
-
82355188348
-
Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals
-
Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA. 2012 Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem. Commun. 48, 58–60. (doi:10.1039/c1cc16107e)
-
(2012)
Chem. Commun
, vol.48
, pp. 58-60
-
-
Chaudhary, Y.S.1
Woolerton, T.W.2
Allen, C.S.3
Warner, J.H.4
Pierce, E.5
Ragsdale, S.W.6
Armstrong, F.A.7
-
26
-
-
39049132264
-
[FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell
-
Hambourger M, Gervaldo M, Svedruzic D, King PW, Gust D, Ghirardi M, Moore AL, Moore TA. 2008 [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am. Chem. Soc. 130, 2015–2022. (doi:10.1021/ja077691k)
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 2015-2022
-
-
Hambourger, M.1
Gervaldo, M.2
Svedruzic, D.3
King, P.W.4
Gust, D.5
Ghirardi, M.6
Moore, A.L.7
Moore, T.A.8
-
27
-
-
73249146231
-
Visible light-driven H2 production by hydrogenases attached to dyesensitized TiO2 nanoparticles
-
Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA. 2009 Visible light-driven H2 production by hydrogenases attached to dyesensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18 457–18 466. (doi:10.1021/ja907923r)
-
(2009)
J. Am. Chem. Soc
, vol.131
, Issue.18
, pp. 457-518
-
-
Reisner, E.1
Powell, D.J.2
Cavazza, C.3
Fontecilla-Camps, J.C.4
Armstrong, F.A.5
-
28
-
-
80054737694
-
Nature-driven photochemistry for catalytic solar hydrogen production: A photosystem I–transition metal catalyst hybrid
-
Utschig LM, Silver SC, Mulfort KL, Tiede DM. 2011 Nature-driven photochemistry for catalytic solar hydrogen production: a photosystem I–transition metal catalyst hybrid. J. Am. Chem. Soc. 133, 16 334–16 337. (doi:10.1021/ja206012r)
-
(2011)
J. Am. Chem. Soc
, vol.133
, Issue.16
, pp. 334-416
-
-
Utschig, L.M.1
Silver, S.C.2
Mulfort, K.L.3
Tiede, D.M.4
-
29
-
-
84866245294
-
Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic
-
Roy A, Madden C, Ghirlanda G. 2012 Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic. Chem. Commun. 48, 9816–9818. (doi:10.1039/c2cc34470j)
-
(2012)
Chem. Commun
, vol.48
, pp. 9816-9818
-
-
Roy, A.1
Madden, C.2
Ghirlanda, G.3
-
30
-
-
84879886576
-
Biomimetic assembly and activation of [FeFe]-hydrogenases
-
Berggren G et al. 2013 Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69. (doi:10.1038/nature12239)
-
(2013)
Nature
, vol.499
, pp. 66-69
-
-
Berggren, G.1
-
31
-
-
84902241357
-
Low temperature assembly of functional 3D DNA–PNA–protein complexes
-
Flory JD et al. 2014 Low temperature assembly of functional 3D DNA–PNA–protein complexes. J. Am. Chem. Soc. 136, 8283–8295. (doi:10.1021/ja501228c)
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 8283-8295
-
-
Flory, J.D.1
-
32
-
-
36849041652
-
Synthetic hydrogenases: Incorporation of an iron carbonyl thiolate into a designed peptide
-
Jones AK, Lichtenstein BR, Dutta A, Gordon G, Dutton PL. 2007 Synthetic hydrogenases: incorporation of an iron carbonyl thiolate into a designed peptide. J. Am. Chem. Soc. 129, 14 844–14 845. (doi:10.1021/ja075116a)
-
(2007)
J. Am. Chem. Soc
, vol.129
, Issue.14
, pp. 844-914
-
-
Jones, A.K.1
Lichtenstein, B.R.2
Dutta, A.3
Gordon, G.4
Dutton, P.L.5
-
33
-
-
0000289261
-
Photoelectrochemical pumping of enzymic carbon dioxide reduction
-
Parkinson BA, Weaver PF. 1984 Photoelectrochemical pumping of enzymic carbon dioxide reduction. Nature 309, 148–149. (doi:10.1038/309148a0)
-
(1984)
Nature
, vol.309
, pp. 148-149
-
-
Parkinson, B.A.1
Weaver, P.F.2
-
34
-
-
84871579091
-
Molecular engineering of a cobalt-based electrocatalytic nanomaterial for hydrogen evolution under fully aqueous conditions
-
Andreiadis ES et al. 2013 Molecular engineering of a cobalt-based electrocatalytic nanomaterial for hydrogen evolution under fully aqueous conditions. Nat. Chem. 5, 48–53. (doi:10.1038/nchem.1481)
-
(2013)
Nat. Chem
, vol.5
, pp. 48-53
-
-
Andreiadis, E.S.1
-
35
-
-
84890525689
-
Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production
-
Blakemore JD, Gupta A, Warren JJ, Brunschwig BS, Gray HB. 2013 Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production. J. Am. Chem. Soc. 135, 18 288–18 291. (doi:10.1021/ja4099609)
-
(2013)
J. Am. Chem. Soc
, vol.135
, Issue.18
, pp. 288-318
-
-
Blakemore, J.D.1
Gupta, A.2
Warren, J.J.3
Brunschwig, B.S.4
Gray, H.B.5
-
36
-
-
71549138815
-
Nailing down nickel for electrocatalysis
-
Hambourger M, Moore TA. 2009 Nailing down nickel for electrocatalysis. Science 326, 1355–1356. (doi:10.1126/science.1183836)
-
(2009)
Science
, vol.326
, pp. 1355-1356
-
-
Hambourger, M.1
Moore, T.A.2
-
37
-
-
84866689924
-
Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using ‘smart’ electrodes
-
Yao SA, Ruther RE, Zhang L, Franking RA, Hamers RJ, Berry JF. 2012 Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using ‘smart’ electrodes. J. Am. Chem. Soc. 134, 15 632–15 635. (doi:10.1021/ja304783j)
-
(2012)
J. Am. Chem. Soc
, vol.134
, Issue.15
, pp. 632-715
-
-
Yao, S.A.1
Ruther, R.E.2
Zhang, L.3
Franking, R.A.4
Hamers, R.J.5
Berry, J.F.6
-
38
-
-
84904131526
-
Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination
-
Krawicz A, Cedeno D, Moore GF. 2014 Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination. Phys. Chem. Chem. Phys. 16, 15 718–15 824. (doi:10.1039/C4CP00495G)
-
(2014)
Phys. Chem. Chem. Phys
, vol.16
, Issue.15
, pp. 718-815
-
-
Krawicz, A.1
Cedeno, D.2
Moore, G.F.3
-
39
-
-
84882268766
-
Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor
-
Krawicz A, Yang J, Anzenberg E, Yano J, Sharp ID, Moore GF. 2013 Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor. J. Am. Chem. Soc. 135, 11 861–11 868. (doi:10.1021/ja404158r)
-
(2013)
J. Am. Chem. Soc
, vol.135
, Issue.11
, pp. 861-911
-
-
Krawicz, A.1
Yang, J.2
Anzenberg, E.3
Yano, J.4
Sharp, I.D.5
Moore, G.F.6
-
40
-
-
84874165017
-
A noble-metal-free hydrogen evolution catalyst grafted to visible lightabsorbing semiconductors
-
Moore GF, Sharp ID. 2013 A noble-metal-free hydrogen evolution catalyst grafted to visible lightabsorbing semiconductors. J. Phys. Chem. Lett. 4, 568–572. (doi:10.1021/jz400028z)
-
(2013)
J. Phys. Chem. Lett
, vol.4
, pp. 568-572
-
-
Moore, G.F.1
Sharp, I.D.2
-
41
-
-
0035891138
-
Photoelectrochemical cells
-
Gratzel M. 2001 Photoelectrochemical cells. Nature 414, 338–344. (doi:10.1038/35104607)
-
(2001)
Nature
, vol.414
, pp. 338-344
-
-
Gratzel, M.1
-
42
-
-
43949109590
-
Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell
-
Barton EE, Rampulla DM, Bocarsly AB. 2008 Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344. (doi:10.1021/ja0776327)
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 6342-6344
-
-
Barton, E.E.1
Rampulla, D.M.2
Bocarsly, A.B.3
-
43
-
-
79551702472
-
Photoelectrochemical hydrogen evolution using Si microwire arrays
-
Boettcher SW et al. 2011 Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219. (doi:10.1021/ja108801m)
-
(2011)
J. Am. Chem. Soc
, vol.133
, pp. 1216-1219
-
-
Boettcher, S.W.1
-
44
-
-
79957528668
-
Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution
-
Hou Y et al. 2011 Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434–438. (doi:10.1038/nmat3008)
-
(2011)
Nat. Mater
, vol.10
, pp. 434-438
-
-
Hou, Y.1
-
45
-
-
80555150640
-
Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
-
Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG. 2011 Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648. (doi:10.1126/science.1209816)
-
(2011)
Science
, vol.334
, pp. 645-648
-
-
Reece, S.Y.1
Hamel, J.A.2
Sung, K.3
Jarvi, T.D.4
Esswein, A.J.5
Pijpers, J.6
Nocera, D.G.7
-
46
-
-
82555168488
-
Surfactant-free, largescale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-lightdriven hydrogen production from water reduction
-
Sun J, Liu C, Yang P. 2011 Surfactant-free, largescale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-lightdriven hydrogen production from water reduction. J. Am. Chem. Soc. 133, 19 306–19 309. (doi:10.1021/ja2083398)
-
(2011)
J. Am. Chem. Soc
, vol.133
, Issue.19
, pp. 306-319
-
-
Sun, J.1
Liu, C.2
Yang, P.3
-
47
-
-
77955913741
-
Photoreduction of CO2 on p-type silicon using Re(Bipy-But)(CO)3Cl: Photovoltages exceeding 600 mV for the selective reduction of CO2 to CO
-
Kumar B, Smieja JM, Kubiak CP. 2010 Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J. Phys. Chem. C 114, 14 220–14 223. (doi:10.1021/jp105171b)
-
(2010)
J. Phys. Chem. C
, vol.114
, Issue.14
, pp. 220-314
-
-
Kumar, B.1
Smieja, J.M.2
Kubiak, C.P.3
-
48
-
-
0036589258
-
Organometallic chemistry on silicon and germanium surfaces
-
Buriak JM. 2002 Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102, 1271–1308. (doi:10.1021/cr000064s)
-
(2002)
Chem. Rev
, vol.102
, pp. 1271-1308
-
-
Buriak, J.M.1
-
49
-
-
0034205444
-
Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111)
-
Cicero RL, Linford MR, Chidsey CED. 2000 Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111). Langmuir 16, 5688–5695. (doi:10.1021/la9911990)
-
(2000)
Langmuir
, vol.16
, pp. 5688-5695
-
-
Cicero, R.L.1
Linford, M.R.2
Chidsey, C.3
-
50
-
-
77952868769
-
Assessment of the passivation capabilities of two different covalent chemical modifications on GaP(100)
-
Richards D, Zemlyanov D, Ivanisevic A. 2010 Assessment of the passivation capabilities of two different covalent chemical modifications on GaP(100). Langmuir 26, 8141–8146. (doi:10.1021/la904451x)
-
(2010)
Langmuir
, vol.26
, pp. 8141-8146
-
-
Richards, D.1
Zemlyanov, D.2
Ivanisevic, A.3
-
51
-
-
33846138950
-
Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting
-
Stachowiak TB, Svec F, Fréchet JMJ. 2006 Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting. Chem. Mater. 18, 5950–5957. (doi:10.1021/cm0617034)
-
(2006)
Chem. Mater
, vol.18
, pp. 5950-5957
-
-
Stachowiak, T.B.1
Svec, F.2
Fréchet, J.3
-
52
-
-
65249142099
-
Structured and gradient polymer brushes from biphenylthiol self-assembled monolayers by self-initiated photografting and photopolymerization (SIPGP)
-
Steenackers M, Küller A, Stoycheva S, Grunze M, Jordan R. 2009 Structured and gradient polymer brushes from biphenylthiol self-assembled monolayers by self-initiated photografting and photopolymerization (SIPGP). Langmuir 25, 2225–2231. (doi:10.1021/la803386c)
-
(2009)
Langmuir
, vol.25
, pp. 2225-2231
-
-
Steenackers, M.1
Küller, A.2
Stoycheva, S.3
Grunze, M.4
Jordan, R.5
-
53
-
-
0032620079
-
Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study
-
Terry J, Linford MR, Wigren C, Cao R, Pianetta P, Chidsey CED. 1999 Alkyl-terminated Si(111) surfaces: a high-resolution, core level photoelectron spectroscopy study. J. Appl. Phys. 85, 213–221. (doi:10.1063/1.369473)
-
(1999)
J. Appl. Phys
, vol.85
, pp. 213-221
-
-
Terry, J.1
Linford, M.R.2
Wigren, C.3
Cao, R.4
Pianetta, P.5
Chidsey, C.6
-
54
-
-
77950255712
-
UV-induced grafting of alkenes to silicon surfaces: Photoemission versus excitons
-
Wang X, Ruther RE, Streifer JA, Hamers RJ. 2010 UV-induced grafting of alkenes to silicon surfaces: photoemission versus excitons. J. Am. Chem. Soc. 132, 4048–4049. (doi:10.1021/ja910498z)
-
(2010)
J. Am. Chem. Soc
, vol.132
, pp. 4048-4049
-
-
Wang, X.1
Ruther, R.E.2
Streifer, J.A.3
Hamers, R.J.4
-
55
-
-
84859141793
-
Patterned polymer brushes
-
Chen T, Amin I, Jordan R. 2012 Patterned polymer brushes. Chem. Soc. Rev. 41, 3280–3296. (doi:10.1039/c2cs15225h)
-
(2012)
Chem. Soc. Rev
, vol.41
, pp. 3280-3296
-
-
Chen, T.1
Amin, I.2
Jordan, R.3
-
56
-
-
80051636877
-
A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s21 for H2 production
-
Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL. 2011 A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s21 for H2 production. Science 333, 863–866. (doi:10.1126/science.1205864)
-
(2011)
Science
, vol.333
, pp. 863-866
-
-
Helm, M.L.1
Stewart, M.P.2
Bullock, R.M.3
Dubois, M.R.4
Dubois, D.L.5
-
57
-
-
79954566267
-
Ni(PPh2NC6H4X2)2]2þ complexes as electrocatalysts for H2 production: Effect of substituents, acids, and water on catalytic rates
-
Kilgore UJ et al. 2011 [Ni(PPh2NC6H4X2)2]2þ complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates. J. Am. Chem. Soc. 133, 5861–5872. (doi:10.1021/ja109755f)
-
(2011)
J. Am. Chem. Soc
, vol.133
, pp. 5861-5872
-
-
Kilgore, U.J.1
-
58
-
-
30744464865
-
Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays
-
Wilson AD, Newell RH, McNevin MJ, Muckerman JT, Rakowski DuBois M, DuBois DL. 2006 Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J. Am. Chem. Soc. 128, 358–366. (doi:10.1021/ja056442y)
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 358-366
-
-
Wilson, A.D.1
Newell, R.H.2
McNevin, M.J.3
MuCkerman, J.T.4
Rakowski Dubois, M.5
Dubois, D.L.6
-
60
-
-
72949115471
-
Hydrogen evolution catalyzed by cobaloximes
-
Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. 2009 Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004. (doi:10.1021/ar900253e)
-
(2009)
Acc. Chem. Res
, vol.42
, pp. 1995-2004
-
-
Dempsey, J.L.1
Brunschwig, B.S.2
Winkler, J.R.3
Gray, H.B.4
-
61
-
-
84990205575
-
Using molecular design to control the performance of hydrogen-producing polymerbrush- modified photocathodes
-
Cedeno D, Krawicz A, Doak P, Yu M, Neaton JB, Moore GF. 2014 Using molecular design to control the performance of hydrogen-producing polymerbrush- modified photocathodes. J. Phys. Chem. Lett. 5, 3222–3226. (doi:10.1021/jz5016394)
-
(2014)
J. Phys. Chem. Lett
, vol.5
, pp. 3222-3226
-
-
Cedeno, D.1
Krawicz, A.2
Doak, P.3
Yu, M.4
Neaton, J.B.5
Moore, G.F.6
-
62
-
-
81255210410
-
Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime
-
Muckerman JT, Fujita E. 2011 Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime. Chem. Commun. 47, 12 456–12 458. (doi:10.1039/c1cc15330g)
-
(2011)
Chem. Commun
, vol.47
, Issue.12
, pp. 456-512
-
-
Muckerman, J.T.1
Fujita, E.2
-
63
-
-
80155177816
-
Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes
-
Solis BH, Hammes-Schiffer S. 2011 Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes. Inorg. Chem. 50, 11 252–11 262. (doi:10.1021/ic201842v)
-
(2011)
Inorg. Chem
, vol.50
, Issue.11
, pp. 252-311
-
-
Solis, B.H.1
Hammes-Schiffer, S.2
-
64
-
-
84878884738
-
Photoinitiated multistep charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer-cobaloxime assembly
-
Veldkamp BS, Han W-S, Dyar SM, Eaton SW, Ratner MA, Wasielewski MR. 2013 Photoinitiated multistep charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer-cobaloxime assembly. Energy Environ. Sci. 6, 1917–1928. (doi:10.1039/C3EE40378E)
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 1917-1928
-
-
Veldkamp, B.S.1
Han, W.-S.2
Dyar, S.M.3
Eaton, S.W.4
Ratner, M.A.5
Wasielewski, M.R.6
-
65
-
-
84875652261
-
Artificial photosynthesis as a frontier technology for energy sustainability
-
Faunce T et al. 2013 Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ. Sci. 6, 1074–1076. (doi:10.1039/C3EE40534F)
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 1074-1076
-
-
Faunce, T.1
-
66
-
-
84875643352
-
Energy and environment policy case for a global project on artificial photosynthesis
-
Faunce TA et al. 2013 Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698. (doi:10.1039/C3EE00063J)
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 695-698
-
-
Faunce, T.A.1
-
67
-
-
79956054956
-
Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
-
Blankenship RE et al. 2011 Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809. (doi:10.1126/science.1200165)
-
(2011)
Science
, vol.332
, pp. 805-809
-
-
Blankenship, R.E.1
-
68
-
-
79960527085
-
Shedding light on solar fuel efficiencies
-
Hammarström L, Winkler JR, Gray HB, Styring S. 2011 Shedding light on solar fuel efficiencies. Science 333, 288. (doi:10.1126/science.333.6040.288-a)
-
(2011)
Science
, vol.333
, pp. 288
-
-
Hammarström, L.1
Winkler, J.R.2
Gray, H.B.3
Styring, S.4
-
69
-
-
33750458683
-
Powering the planet: Chemical challenges in solar energy utilization
-
Lewis NS, Nocera DG. 2006 Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15 729–15 735. (doi:10.1073/pnas.0603395103)
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, Issue.15
, pp. 729-815
-
-
Lewis, N.S.1
Nocera, D.G.2
-
70
-
-
79959818384
-
Energy conversion in photosynthesis: A paradigm for solar fuel production
-
Moore GF, Brudvig GW. 2011 Energy conversion in photosynthesis: a paradigm for solar fuel production. Annu. Rev. Condens. Matter Phys. 2, 303–327. (doi:10.1146/annurev-conmatphys-062910-140503)
-
(2011)
Annu. Rev. Condens. Matter Phys
, vol.2
, pp. 303-327
-
-
Moore, G.F.1
Brudvig, G.W.2
-
71
-
-
84969505502
-
Running on Sun
-
World November
-
Najafpour MM, Shen J-R, Barber J, Moore GF, Govindjee R. 2012 Running on Sun. Chem. World November, 43.
-
(2012)
Chem
, pp. 43
-
-
Najafpour, M.M.1
Shen, J.-R.2
Barber, J.3
Moore, G.F.4
Govindjee, R.5
-
72
-
-
57649232342
-
Living healthy on a dying planet
-
Nocera DG. 2009 Living healthy on a dying planet. Chem. Soc. Rev. 38, 13–15. (doi:10.1039/b820660k)
-
(2009)
Chem. Soc. Rev
, vol.38
, pp. 13-15
-
-
Nocera, D.G.1
-
73
-
-
84893452349
-
Earth-abundant hydrogen evolution electrocatalysts
-
Mckone JR, Marinescu SC, Brunschwig BS, Winkler JR, Gray HB. 2014 Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. 5, 865–878. (doi:10.1039/c3sc51711j)
-
(2014)
Chem. Sci
, vol.5
, pp. 865-878
-
-
McKone, J.R.1
Marinescu, S.C.2
Brunschwig, B.S.3
Winkler, J.R.4
Gray, H.B.5
-
74
-
-
84874458964
-
Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells
-
Swierk JR, Mallouk TE. 2013 Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev. 42, 2357–2387. (doi:10.1039/C2CS35246J)
-
(2013)
Chem. Soc. Rev
, vol.42
, pp. 2357-2387
-
-
Swierk, J.R.1
Mallouk, T.E.2
-
75
-
-
78449289476
-
Solar water splitting cells
-
Walter MG et al. 2010 Solar water splitting cells. Chem. Rev. 110, 6446–6473. (doi:10.1021/cr1002326)
-
(2010)
Chem. Rev
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
-
76
-
-
84857517594
-
Recent advances in hybrid photocatalysts for solar fuel production
-
Tran PD, Wong LH, Barber J, Loo JSC. 2012 Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5, 5902–5918. (doi:10.1039/c2ee02849b)
-
(2012)
Energy Environ. Sci
, vol.5
, pp. 5902-5918
-
-
Tran, P.D.1
Wong, L.H.2
Barber, J.3
Loo, J.4
-
77
-
-
67849115757
-
Powering the planet with solar fuel
-
Gray HB. 2009 Powering the planet with solar fuel. Nat. Chem. 1, 112. (doi:10.1038/nchem.206)
-
(2009)
Nat. Chem
, vol.1
, pp. 112
-
-
Gray, H.B.1
|