-
3
-
-
0036680315
-
-
M. Monthioux Carbon 2002 40 1809 1823
-
(2002)
Carbon
, vol.40
, pp. 1809-1823
-
-
Monthioux, M.1
-
5
-
-
84928120637
-
-
note
-
Adopting a technological term used by bearing engineers (cf. ref. 50), we describe the dynamic motions of fullerene journals as "rolling". This description also helps to avoid the confusion with the other dynamics of arylene units or alkyl substituents that have freedom of "rotations".
-
-
-
-
12
-
-
84903162849
-
-
S. Hitosugi K. Ohkubo R. Iizuka Y. Kawashima K. Nakamura S. Sato H. Kono S. Fukuzumi H. Isobe Org. Lett. 2014 16 3352 3355
-
(2014)
Org. Lett.
, vol.16
, pp. 3352-3355
-
-
Hitosugi, S.1
Ohkubo, K.2
Iizuka, R.3
Kawashima, Y.4
Nakamura, K.5
Sato, S.6
Kono, H.7
Fukuzumi, S.8
Isobe, H.9
-
15
-
-
84928120636
-
-
http://www.orgchem2.chem.tohoku.ac.jp/finite/
-
-
-
-
22
-
-
85043063437
-
-
T. Iwamoto Z. Slanina N. Mizorogi J. Guo T. Akasaka S. Nagase H. Takaya N. Yasuda T. Kato S. Yamago Chem.-Eur. J. 2014 47 14403 14409
-
(2014)
Chem.-Eur. J.
, vol.47
, pp. 14403-14409
-
-
Iwamoto, T.1
Slanina, Z.2
Mizorogi, N.3
Guo, J.4
Akasaka, T.5
Nagase, S.6
Takaya, H.7
Yasuda, N.8
Kato, T.9
Yamago, S.10
-
24
-
-
84896329915
-
-
Y. Nakanishi H. Omachi S. Matsuura Y. Miyata R. Kitaura Y. Segawa K. Itami H. Shinohara Angew. Chem., Int. Ed. 2014 53 3102 3106
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 3102-3106
-
-
Nakanishi, Y.1
Omachi, H.2
Matsuura, S.3
Miyata, Y.4
Kitaura, R.5
Segawa, Y.6
Itami, K.7
Shinohara, H.8
-
27
-
-
84928120635
-
-
note
-
Structure-thermodynamics studies indicated that the contribution of alkyl chains on the thermodynamics is not large for [4]CC. See ref. 6b.
-
-
-
-
46
-
-
84928120634
-
-
note
-
In solution, the pyrrolidine ring on the fullerene molecule acts as a shaft for the single-axis rolling motion of the journal, and, in the time-averaged structure, this five-membered ring stands aligned along the C4 symmetry axis of the outer [4]CC bearing.
-
-
-
-
48
-
-
84861415895
-
-
in, ed. J. W. Steed and A. Gale, Wiley, Chichester
-
F. P. Schmidtchen, in Supramolecular Chemistry: From Molecules to Nanomaterials, ed., J. W. Steed, and, P. A. Gale, Wiley, Chichester, 2012, vol. 2, pp. 275-296
-
(2012)
Supramolecular Chemistry: From Molecules to Nanomaterials
, vol.2
, pp. 275-296
-
-
Schmidtchen, F.P.1
-
49
-
-
84928120633
-
-
note
-
Note that ITC analysis directly provides an experimental enthalpy for the association, which enables straightforward comparisons with theoretical energetics without nuisance considerations of entropic terms (see also ref. 48 and 49).
-
-
-
-
50
-
-
84928120632
-
-
note
-
The association enthalpy of unsubstituted C60 in dichloromethane is -11.6 ± 0.4 kcal mol-1 (ref. 5 and 6d), which shows that introduction of substituents does not hinder but rather enforces the association of the journal by ca. -1 kcal mol-1
-
-
-
-
51
-
-
84928120631
-
-
note
-
The dispersion force is undoubtedly playing a key role for the peapod formation with close van der Waals contacts (ref. 6b), and the present results indicate its premature treatment in the present DFT methods (see also ref. 34). Effects on the lengthening of the tubular structure is thus of great interest for in the near future. (See also ref. 6d).
-
-
-
-
52
-
-
84928120630
-
-
note
-
The geometries from LC-BLYP/PCM and BMK/PCM methods matched with RMSD of 0.090 Å. See Fig. S1
-
-
-
-
55
-
-
84928120629
-
-
note
-
Yamago and coworkers also reported a tendency of overestimate of association energies with M06-2X. See ref. 8.
-
-
-
-
56
-
-
84928120628
-
-
note
-
One reviewer expressed his/her interest in further extensions of polarization functions over hydrogen atoms as well as in other DFT methods with more recent dispersion treatments. Albeit preliminary within a framework of the Gaussian program, these comparisons were made by single-point calculations, and the results were summarized in Table S1. In short, the extension of polarization functions to (d,p) setting did not affect the results considerably. The inclusion of dispersion effects with modern D3 methods did not improve the results by showing overestimations of the association energy over 35 kcal mol-1. The results may indicate that further improvements in the theoretical models of dispersion forces are necessary especially for the curved π-systems. The present results also show that our carbonaceous molecular bearing provides an interesting and challenging test case for theoretical evaluations (ref. 48d), and the evaluation of other recent dispersion models, such as many-body dispersion models implemented in the Amsterdam Density Functional program, may be of interest for the further theoretical studies in the future. See ref. 48 for representative examples.
-
-
-
-
58
-
-
84928120626
-
-
note
-
The rolling energetics also shows that the starting geometry is the global minimum for the single-axis rolling motions by showing the minimum at 0° in Fig. 3.
-
-
-
-
60
-
-
84928120625
-
-
note
-
The two carbon atoms on the equator are located in the middle of biaryl linkages. A similar anomalous location of carbon atoms on the biaryl linkages is also experimentally observed in the solid state. See ref. 6b.
-
-
-
-
63
-
-
1542779956
-
-
M. Elstner D. Porezag G. Jungnickel J. Elsner M. Haugk T. Frauenheim S. Suhai G. Seifert Phys. Rev. B: Condens. Matter Mater. Phys. 1998 58 7260 7268
-
(1998)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.58
, pp. 7260-7268
-
-
Elstner, M.1
Porezag, D.2
Jungnickel, G.3
Elsner, J.4
Haugk, M.5
Frauenheim, T.6
Suhai, S.7
Seifert, G.8
-
64
-
-
84928120624
-
-
note
-
The association energy of (P)-(12,8)-[4]CC⊃ 1+ was estimated as -78.9 kcal mol-1 by the DFTB method. This value was larger than that of ωB97X-D method (-69.8 kcal mol-1, cf. Table 1).
-
-
-
-
65
-
-
84928120623
-
-
note
-
PCM implementation in the DFTB method is not accessible with our resource using DFTB+ program (cf. ref. 52).
-
-
-
-
66
-
-
84928120622
-
-
note
-
Although the relative stabilities of two minima were switched from the LC-BLYP calculations, the energy differences of minima were as small as <0.2 kcal mol-1 for SCC-DFTB calculations and <0.6 kcal mol-1 for LC-BLYP calculations. The switching of two minima may be the origin of minimum-switching of realistic motions (Fig. S5): stabilities of 1/4 precession and bp structures were switched between SCC-DFTB and LC-BLYP calculations.
-
-
-
-
67
-
-
84928120621
-
-
note
-
Because of minute differences in the chemical shifts of resonances, we could not study the experimental dynamics of this system
-
-
-
-
68
-
-
84860476833
-
-
N. Niitsu M. Kikuchi H. Ikeda K. Yamazaki M. Kanno H. Kono K. Mitsuke M. Toda K. Nakai J. Chem. Phys. 2012 136 164304
-
(2012)
J. Chem. Phys.
, vol.136
, pp. 164304
-
-
Niitsu, N.1
Kikuchi, M.2
Ikeda, H.3
Yamazaki, K.4
Kanno, M.5
Kono, H.6
Mitsuke, K.7
Toda, M.8
Nakai, K.9
-
73
-
-
84928120620
-
-
note
-
The energy barriers from MD and TS analysis are comparable to the one estimated with LC-BLYP/PCM for the idealized rolling motions (Fig. S4, +4.3 kcal mol-1).
-
-
-
-
74
-
-
0003420010
-
-
Wiley, Chichester, United Kingdom, ch 15.5
-
M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, Chichester, United Kingdom, 2001, ch 15.5
-
(2001)
Spin Dynamics: Basics of Nuclear Magnetic Resonance
-
-
Levitt, M.H.1
-
81
-
-
84928120619
-
-
note
-
Delicate care must be taken in the comparison of experimental and theoretical data especially for large supramolecular systems. As we experimentally demonstrated in our systems (ref. 6), entropy terms in the association should be very complicated by the involvement of conformations and solvent molecules. Such entropy effects cannot be readily reproduced by any simple theoretical models (ref. 48).
-
-
-
-
82
-
-
7744226590
-
-
Dekker, New York, USA, ch. 1
-
A. Harnoy, Bearing Design in Machinery: Engineering Tribology and Lubrication, Dekker, New York, USA, 2003, ch. 1
-
(2003)
Bearing Design in Machinery: Engineering Tribology and Lubrication
-
-
Harnoy, A.1
-
83
-
-
70450206724
-
-
Gaussian, Inc., Wallingford, CT
-
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009
-
(2009)
Gaussian 09
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Scalmani, G.7
Barone, V.8
Mennucci, B.9
Petersson, G.A.10
Nakatsuji, H.11
Caricato, M.12
Li, X.13
Hratchian, H.P.14
Izmaylov, A.F.15
Bloino, J.16
Zheng, G.17
Sonnenberg, J.L.18
Hada, M.19
Ehara, M.20
Toyota, K.21
Fukuda, R.22
Hasegawa, J.23
Ishida, M.24
Nakajima, T.25
Honda, Y.26
Kitao, O.27
Nakai, H.28
Vreven, T.29
Montgomery, J.A.30
Peralta, J.E.31
Ogliaro, F.32
Bearpark, M.33
Heyd, J.J.34
Brothers, E.35
Kudin, K.N.36
Staroverov, V.N.37
Kobayashi, R.38
Normand, J.39
Raghavachari, K.40
Rendell, A.41
Burant, J.C.42
Iyengar, S.S.43
Tomasi, J.44
Cossi, M.45
Rega, N.46
Millam, J.M.47
Klene, M.48
Knox, J.E.49
Cross, J.B.50
Bakken, V.51
Adamo, C.52
Jaramillo, J.53
Gomperts, R.54
Stratmann, R.E.55
Yazyev, O.56
Austin, A.J.57
Cammi, R.58
Pomelli, C.59
Ochterski, J.W.60
Martin, R.L.61
Morokuma, K.62
Zakrzewski, V.G.63
Voth, G.A.64
Salvador, P.65
Dannenberg, J.J.66
Dapprich, S.67
Daniels, A.D.68
Farkas, Ö.69
Foresman, J.B.70
Ortiz, J.V.71
Cioslowski, J.72
Fox, D.J.73
more..
-
84
-
-
84928120618
-
-
Bremen Center for Computational Materials Science, University of Bremen. See also
-
Bremen Center for Computational Materials Science, University of Bremen. See also http://www.dftb-plus.info
-
-
-
|