메뉴 건너뛰기




Volumn 234, Issue , 2014, Pages 19-42

Computing efficiently spectral-spatial classification of hyperspectral images on commodity GPUs

Author keywords

Classification; CUDA; Hyperspectral images; Watershed

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER GRAPHICS; DATA TRANSFER; IMAGE SEGMENTATION; INDEPENDENT COMPONENT ANALYSIS; PROGRAM PROCESSORS; SPECTROSCOPY; SUPPORT VECTOR MACHINES; WATERSHEDS;

EID: 84927608496     PISSN: 21945357     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-01649-8_2     Document Type: Chapter
Times cited : (11)

References (46)
  • 3
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • Gualtieri, J.A., Cromp, R.F.: Support vector machines for hyperspectral remote sensing classification. Proc. SPIE 3584, 221–232 (1998)
    • (1998) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 6
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel, M., Chanussot, J., Benediktsson, J.A., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(10), 3804–3814 (2008)
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.10 , pp. 3804-3814
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3    Sveinsson, J.R.4
  • 7
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Tarabalka, Y., Benediktsson, J.A. and Chanussot, J.: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. Geosci. Remote Sens. IEEE Trans. 47(8), 2973–2987 (2009)
    • (2009) Geosci. Remote Sens. IEEE Trans , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 8
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn. 43(7), 2367–2379 (2010)
    • (2010) Pattern Recogn , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 10
    • 23844524154 scopus 로고    scopus 로고
    • A unified framework forMAP estimation in remote sensing image segmentation
    • Farag, A.A., Mohamed, R.M., El-Baz, A.: A unified framework forMAP estimation in remote sensing image segmentation. Geosci. Remote Sens. IEEE Trans. 43(7), 1617–1634 (2005)
    • (2005) Geosci. Remote Sens. IEEE Trans , vol.43 , Issue.7 , pp. 1617-1634
    • Farag, A.A.1    Mohamed, R.M.2    El-Baz, A.3
  • 13
    • 84859048363 scopus 로고    scopus 로고
    • Spectral spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
    • Bernard, K., Tarabalka, Y., Angulo, J., Chanussot, J., Benediktsson, J.A.: Spectral spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach. Image Process. IEEE Trans. 21(4), 2008–2021 (2012)
    • (2012) Image Process. IEEE Trans , vol.21 , Issue.4 , pp. 2008-2021
    • Bernard, K.1    Tarabalka, Y.2    Angulo, J.3    Chanussot, J.4    Benediktsson, J.A.5
  • 14
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An eficient algorithm based on immersion simulations
    • Vincent, L., Soille, P.: Watersheds in digital spaces: an eficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991)
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell , vol.13 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 15
    • 77954781731 scopus 로고    scopus 로고
    • Improving the performance of hyperspectral image and signal processing algorithms using parallel, distributed speciallized hardware-based systems
    • Plaza, A., Plaza, J., Vegas, H.: Improving the performance of hyperspectral image and signal processing algorithms using parallel, distributed speciallized hardware-based systems. J. Signal Proces. Syst. 61(3), 293–315 (2010)
    • (2010) J. Signal Proces. Syst , vol.61 , Issue.3 , pp. 293-315
    • Plaza, A.1    Plaza, J.2    Vegas, H.3
  • 16
    • 84871925740 scopus 로고    scopus 로고
    • Use of FPGA or GPUbased architectures for remotely sensed hyperspectral image processing
    • González, C., Sánchez, S., Paz, A., Resano, J., Mozos, D., Plaza, A.: Use of FPGA or GPUbased architectures for remotely sensed hyperspectral image processing. Integr. VLSI J. 46(2), 89–103 (2013)
    • (2013) Integr. VLSI J , vol.46 , Issue.2 , pp. 89-103
    • González, C.1    Sánchez, S.2    Paz, A.3    Resano, J.4    Mozos, D.5    Plaza, A.6
  • 17
    • 70349895901 scopus 로고    scopus 로고
    • Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing
    • Tarabalka, Y., Haavardsholm, T.V., Kåsen, I., Skauli, T.: Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing. J. Real Time Image Process. 4(3), 287–300 (2009)
    • (2009) J. Real Time Image Process , vol.4 , Issue.3 , pp. 287-300
    • Tarabalka, Y.1    Haavardsholm, T.V.2    Kåsen, I.3    Skauli, T.4
  • 19
    • 84879103217 scopus 로고    scopus 로고
    • Unsupervised segmentation of hyperspectral images through evolved cellular automata
    • Priego, B., Souto, D., Bellas, F., Duro, R.J.:Unsupervised segmentation of hyperspectral images through evolved cellular automata. Adv. Knowl. Based Intell. Inform. Eng. Syst. 243, 2160–2169 (2012)
    • (2012) Adv. Knowl. Based Intell. Inform. Eng. Syst , vol.243 , pp. 2160-2169
    • Priego, B.1    Souto, D.2    Bellas, F.3    Duro, R.J.4
  • 22
    • 84864323267 scopus 로고    scopus 로고
    • A new parallel tool for classification of remotely sensed imagery
    • Bernabé, S., Plaza, A., Reddy Marpu, P., Benediktsson, J.A.: A new parallel tool for classification of remotely sensed imagery. Comput. Geosci. 46, 208–218 (2012)
    • (2012) Comput. Geosci , vol.46 , pp. 208-218
    • Bernabé, S.1    Plaza, A.2    Reddy Marpu, P.3    Benediktsson, J.A.4
  • 23
    • 85042985165 scopus 로고    scopus 로고
    • NVIDIA Corporation: NVIDIA CUDA C Programming Guide 4.2, Santa Clara
    • NVIDIA Corporation: NVIDIA CUDA C Programming Guide 4.2, Santa Clara (2011)
    • (2011)
  • 24
    • 85043016323 scopus 로고    scopus 로고
    • NVIDIA Corporation: NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110 Whitepaper
    • NVIDIA Corporation: NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110 Whitepaper (2012)
    • (2012)
  • 25
    • 85043019849 scopus 로고    scopus 로고
    • NVIDIA Corporation: CUDA C Best Practices Guide
    • NVIDIA Corporation: CUDA C Best Practices Guide (2012)
    • (2012)
  • 28
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 29
    • 33646863860 scopus 로고    scopus 로고
    • A morphological gradient approach to color edge detection
    • Evans, A. and Liu, X.: A morphological gradient approach to color edge detection. Image Process IEEE Trans. 15(6), 1454–1463 (2006)
    • (2006) Image Process IEEE Trans , vol.15 , Issue.6 , pp. 1454-1463
    • Evans, A.1    Liu, X.2
  • 30
    • 0000950331 scopus 로고    scopus 로고
    • The watershed transform: Definitions, algorithms and parallelization strategies
    • Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fund. Inform. 41(1–2), 187–228 (2000)
    • (2000) Fund. Inform , vol.41 , Issue.12 , pp. 187-228
    • Roerdink, J.1    Meijster, A.2
  • 31
    • 0028464661 scopus 로고
    • Topographic distance and watershed lines
    • Meyer, F.: Topographic distance and watershed lines. Math. Morphol. Appl. Signal Process. 38(1), 113–125 (1994)
    • (1994) Math. Morphol. Appl. Signal Process , vol.38 , Issue.1 , pp. 113-125
    • Meyer, F.1
  • 35
    • 0001013288 scopus 로고
    • MJRTY - a fast majority vote algorithm
    • In: Boyer, R. S. (ed.), Springer, Netherlands
    • Boyer, R.S., Moore, J.S.: MJRTY - a fast majority vote algorithm, In: Boyer, R. S. (ed.) Automated Reasoning 1 Automated Reasoning Series, Springer, Netherlands, pp. 105–117 (1991)
    • (1991) Automated Reasoning 1 Automated Reasoning Series , pp. 105-117
    • Boyer, R.S.1    Moore, J.S.2
  • 37
    • 84869154467 scopus 로고    scopus 로고
    • Optimizing memory access patterns for cellular automata on GPUs
    • In: Hwu W. W. (ed.), Jade Edition. Morgan Kaufmann Publishers Inc., San Francisco
    • Balasalle, J., López, M.A., Rutherford, M.J.: Optimizing memory access patterns for cellular automata on GPUs. In: Hwu W. W. (ed.) GPU Computing Gems, Jade Edition. Morgan Kaufmann Publishers Inc., San Francisco, pp. 67–75 (2012)
    • (2012) GPU Computing Gems , pp. 67-75
    • Balasalle, J.1    López, M.A.2    Rutherford, M.J.3
  • 42
    • 85038390980 scopus 로고    scopus 로고
    • GPUSVM: A comprehensive CUDA based support vector machine package
    • Li, Q., Salman, R., Test, E., Strack, R., Kecman, V.: GPUSVM: a comprehensive CUDA based support vector machine package. Central Eur. J. Comput. Sci. 1(4), 387–405 (2011)
    • (2011) Central Eur. J. Comput. Sci , vol.1 , Issue.4 , pp. 387-405
    • Li, Q.1    Salman, R.2    Test, E.3    Strack, R.4    Kecman, V.5
  • 44
    • 77957867784 scopus 로고    scopus 로고
    • Parallel graph component labelling with GPUs and CUDA
    • Hawick, K.A., Leist, A., Playne, D.P.: Parallel graph component labelling with GPUs and CUDA. Parallel Comput. 36(12), 655–678 (2010)
    • (2010) Parallel Comput , vol.36 , Issue.12 , pp. 655-678
    • Hawick, K.A.1    Leist, A.2    Playne, D.P.3
  • 45
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.3 , pp. 27
    • Chang, C.C.1    Lin, C.J.2
  • 46
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.