메뉴 건너뛰기




Volumn 33, Issue 25, 2014, Pages 4437-4452

Statistical analysis with missing exposure data measured by proxy respondents: A misclassification problem within a missing-data problem

Author keywords

Exposure misclassification; Gerontology; Missing data; Proxy respondents

Indexed keywords

ACCURACY; ARTICLE; CALCULATION; GOLD STANDARD; HIP FRACTURE; HUMAN; MACHINE LEARNING; MATHEMATICAL ANALYSIS; NONPARAMETRIC TEST; PROBABILITY; RELIABILITY; SCORING SYSTEM; SENSITIVITY AND SPECIFICITY; SIMULATION; STATISTICAL ANALYSIS; AGED; COMPUTER SIMULATION; FEMALE; MALE; PATHOPHYSIOLOGY; PHYSIOLOGY; PROPENSITY SCORE; REGRESSION ANALYSIS; STATISTICAL MODEL; UNITED STATES; VERY ELDERLY; WALKING;

EID: 84927567840     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6238     Document Type: Article
Times cited : (12)

References (44)
  • 4
    • 58749103885 scopus 로고    scopus 로고
    • Robust techniques for measurement error correction: a review
    • Guolo A. Robust techniques for measurement error correction: a review. Statistical Methods in Medical Research 2008; 17:555-580.
    • (2008) Statistical Methods in Medical Research , vol.17 , pp. 555-580
    • Guolo, A.1
  • 7
    • 84873406584 scopus 로고    scopus 로고
    • Sensitivity analysis for nonignorable missingness and outcome misclassification from proxy reports
    • Shardell M, Simonsick E, Hicks GE, Resnick B, Ferrucci L, Magaziner J. Sensitivity analysis for nonignorable missingness and outcome misclassification from proxy reports. Epidemiology 2013; 24:215-223.
    • (2013) Epidemiology , vol.24 , pp. 215-223
    • Shardell, M.1    Simonsick, E.2    Hicks, G.E.3    Resnick, B.4    Ferrucci, L.5    Magaziner, J.6
  • 9
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting (with discussion)
    • Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion). Annals of Statistics 2000; 28:337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001; 29:1189-1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 13
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure periods-application to control of the healthy worker survivor effect
    • Robins JM. A new approach to causal inference in mortality studies with sustained exposure periods-application to control of the healthy worker survivor effect. Mathematical Modelling 1986; 7:1393-1512.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.M.1
  • 14
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 15
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516-524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 16
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine 1998; 17:2265-2281.
    • (1998) Statistics in Medicine , vol.17 , pp. 2265-2281
    • D'Agostino, R.B.1
  • 17
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11:550-560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 18
    • 1542472967 scopus 로고    scopus 로고
    • Marginal structural models as a tool for standardization
    • Sato T, Matsuyama Y. Marginal structural models as a tool for standardization. Epidemiology 2003; 14:680-686.
    • (2003) Epidemiology , vol.14 , pp. 680-686
    • Sato, T.1    Matsuyama, Y.2
  • 19
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika 1976; 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 21
    • 83655163679 scopus 로고    scopus 로고
    • Berkson's bias, selection bias, and missing data
    • Westreich D. Berkson's bias, selection bias, and missing data. Epidemiology 2012; 23:159-164.
    • (2012) Epidemiology , vol.23 , pp. 159-164
    • Westreich, D.1
  • 23
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little RJ, Wang Y. Pattern-mixture models for multivariate incomplete data with covariates. Biometrics 1996; 52:98-111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.1    Wang, Y.2
  • 25
    • 84863248805 scopus 로고    scopus 로고
    • Comparing reports from hip-fracture patients and their proxies: implications on evaluating sex differences in disability and depressive symptoms
    • Shardell M, Alley DE, Miller RR, Hicks GE, Magaziner J. Comparing reports from hip-fracture patients and their proxies: implications on evaluating sex differences in disability and depressive symptoms. Journal of Aging and Health 2012; 24:367-383.
    • (2012) Journal of Aging and Health , vol.24 , pp. 367-383
    • Shardell, M.1    Alley, D.E.2    Miller, R.R.3    Hicks, G.E.4    Magaziner, J.5
  • 26
    • 77956895720 scopus 로고    scopus 로고
    • Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting
    • Lyles RH, Lin J. Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting. Statistics in Medicine 2010; 29:2297-2309.
    • (2010) Statistics in Medicine , vol.29 , pp. 2297-2309
    • Lyles, R.H.1    Lin, J.2
  • 28
    • 75749103379 scopus 로고    scopus 로고
    • Sensitivity analysis of informatively coarsened data using pattern mixture models
    • Shardell M, El-Kamary SS. Sensitivity analysis of informatively coarsened data using pattern mixture models. Journal of Biopharmaceutical Statistics 2009; 19:1018-1038.
    • (2009) Journal of Biopharmaceutical Statistics , vol.19 , pp. 1018-1038
    • Shardell, M.1    El-Kamary, S.S.2
  • 29
    • 57749174263 scopus 로고    scopus 로고
    • Sensitivity analysis using elicited expert information for inference with coarsened data: illustration of censored discrete event times in ALIVE
    • Shardell M, Scharfstein DO, Vlahov D, Galai N. Sensitivity analysis using elicited expert information for inference with coarsened data: illustration of censored discrete event times in ALIVE. American Journal of Epidemiology 2008; 168:1460-1469.
    • (2008) American Journal of Epidemiology , vol.168 , pp. 1460-1469
    • Shardell, M.1    Scharfstein, D.O.2    Vlahov, D.3    Galai, N.4
  • 30
    • 0017371080 scopus 로고
    • The effects of misclassification on the estimation of relative risk
    • Barron BA. The effects of misclassification on the estimation of relative risk. Biometrics 1977; 33:414-418.
    • (1977) Biometrics , vol.33 , pp. 414-418
    • Barron, B.A.1
  • 31
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee B K, Lessler J, Stuart E A. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29:337-346.
    • (2010) Statistics in Medicine , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 32
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 4:403-425.
    • (2004) Psychological Methods , vol.4 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 35
    • 29244469612 scopus 로고    scopus 로고
    • A method to automate probabilistic sensitivity analyses of misclassified binary variables
    • Fox M P, Lash T L, Greenland S. A method to automate probabilistic sensitivity analyses of misclassified binary variables. International Journal of Epidemiology 2005; 34:1370-1376.
    • (2005) International Journal of Epidemiology , vol.34 , pp. 1370-1376
    • Fox, M.P.1    Lash, T.L.2    Greenland, S.3
  • 38
    • 0011936489 scopus 로고    scopus 로고
    • Large-sample theory for parametric multiple imputation procedures
    • Wang N, Robins JM. Large-sample theory for parametric multiple imputation procedures. Biometrika 1998; 85:935-948.
    • (1998) Biometrika , vol.85 , pp. 935-948
    • Wang, N.1    Robins, J.M.2
  • 39
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins JM, Wang N. Inference for imputation estimators. Biometrika 2000; 87:113-124.
    • (2000) Biometrika , vol.87 , pp. 113-124
    • Robins, J.M.1    Wang, N.2
  • 40
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng XL. Multiple-imputation inferences with uncongenial sources of input. Statistical Science 1994; 9:538-558.
    • (1994) Statistical Science , vol.9 , pp. 538-558
    • Meng, X.L.1
  • 41
    • 84882625543 scopus 로고    scopus 로고
    • Inverse probability weighting with error-prone covariates
    • McCaffrey DF, Lockwood JR, Setodji CM. Inverse probability weighting with error-prone covariates. Biometrika 2013; 100:671-680.
    • (2013) Biometrika , vol.100 , pp. 671-680
    • McCaffrey, D.F.1    Lockwood, J.R.2    Setodji, C.M.3
  • 42
    • 84863274565 scopus 로고    scopus 로고
    • A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error
    • Yi GY, Ma Y, Carroll RJ. A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error. Biometrika 2012; 99:151-165.
    • (2012) Biometrika , vol.99 , pp. 151-165
    • Yi, G.Y.1    Ma, Y.2    Carroll, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.