메뉴 건너뛰기




Volumn 42, Issue , 2015, Pages 16-24

Cell words: Modelling the visual appearance of cells in histopathology images

Author keywords

Dictionary learning; Histopathology image analysis; Mitotic cell detection; Visual appearance modelling of cells

Indexed keywords

CELLS; LEARNING SYSTEMS; MEDICAL IMAGING; TEXTURES; VISUALIZATION;

EID: 84926407599     PISSN: 08956111     EISSN: 18790771     Source Type: Journal    
DOI: 10.1016/j.compmedimag.2014.11.008     Document Type: Article
Times cited : (26)

References (41)
  • 1
    • 36348993857 scopus 로고    scopus 로고
    • High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates
    • Alexe G., Dalgin G.S., Scanfeld D., Tamayo P., Mesirov J.P., DeLisi C., et al. High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res. 2007, 67(22):10669-10676.
    • (2007) Cancer Res. , vol.67 , Issue.22 , pp. 10669-10676
    • Alexe, G.1    Dalgin, G.S.2    Scanfeld, D.3    Tamayo, P.4    Mesirov, J.P.5    DeLisi, C.6
  • 2
    • 0026072872 scopus 로고
    • Pathological prognostic factors in breast cancer: I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up
    • Elston C., Ellis I. Pathological prognostic factors in breast cancer: I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991, 19(5):403-410.
    • (1991) Histopathology , vol.19 , Issue.5 , pp. 403-410
    • Elston, C.1    Ellis, I.2
  • 3
    • 0026551996 scopus 로고
    • Nuclear pleomorphism, a strong prognostic factor in axillary node-negative small invasive breast cancer
    • Stierer M., Rosen H., Weber R. Nuclear pleomorphism, a strong prognostic factor in axillary node-negative small invasive breast cancer. Breast Cancer Res. Treat. 1991, 20(2):109-116.
    • (1991) Breast Cancer Res. Treat. , vol.20 , Issue.2 , pp. 109-116
    • Stierer, M.1    Rosen, H.2    Weber, R.3
  • 5
    • 84900449424 scopus 로고    scopus 로고
    • Methods for nuclei detection, segmentation and classification in digital histopathology: a review - current status and future potential
    • 9999-9999
    • Irshad H., Veillard A., Roux L., Racoceanu D. Methods for nuclei detection, segmentation and classification in digital histopathology: a review - current status and future potential. IEEE Trans. Biomed. Eng. 2014, 99(99). 9999-9999.
    • (2014) IEEE Trans. Biomed. Eng. , vol.99 , Issue.99
    • Irshad, H.1    Veillard, A.2    Roux, L.3    Racoceanu, D.4
  • 6
    • 84885899449 scopus 로고    scopus 로고
    • A gamma-Gaussian mixture model for detection of mitotic cells in breast cancer histopathology images
    • Khan A.M., ElDaly H., Rajpoot N.M. A gamma-Gaussian mixture model for detection of mitotic cells in breast cancer histopathology images. J. Pathol. Inform. 2013, 4:11.
    • (2013) J. Pathol. Inform. , vol.4 , pp. 11
    • Khan, A.M.1    ElDaly, H.2    Rajpoot, N.M.3
  • 7
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • Moon T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 1996, 13(6):47-60.
    • (1996) IEEE Signal Process. Mag. , vol.13 , Issue.6 , pp. 47-60
    • Moon, T.K.1
  • 9
    • 84920921065 scopus 로고    scopus 로고
    • Assessment of algorithms for mitosis detection in breast cancer histopathology images
    • Veta M., Diest P.J.V., Willems S.M., Wang H., Madabhushi A., Cruz-Roa A., et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 2014, [available online at: http://www.sciencedirect.com/science/article/pii/S1361841514001807]. 10.1016/j.media.2014.11.010.
    • (2014) Med. Image Anal.
    • Veta, M.1    Diest, P.J.V.2    Willems, S.M.3    Wang, H.4    Madabhushi, A.5    Cruz-Roa, A.6
  • 10
    • 84885944291 scopus 로고    scopus 로고
    • Automated mitosis detection in histopathology using morphological and multi-channel statistics features
    • Irshad H. Automated mitosis detection in histopathology using morphological and multi-channel statistics features. J. Pathol. Inform. 2013, 4.
    • (2013) J. Pathol. Inform. , vol.4
    • Irshad, H.1
  • 13
  • 15
    • 84899697490 scopus 로고    scopus 로고
    • HyMaP: a hybrid magnitude-phase approach to unsupervised segmentation of tumor areas in breast cancer histology images
    • Khan A.M., El-Daly H., Simmons E., Rajpoot N.M. HyMaP: a hybrid magnitude-phase approach to unsupervised segmentation of tumor areas in breast cancer histology images. J. Pathol. Inform. 2013, 4(Suppl.).
    • (2013) J. Pathol. Inform. , vol.4
    • Khan, A.M.1    El-Daly, H.2    Simmons, E.3    Rajpoot, N.M.4
  • 20
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B: Meth. 1996, 267-288.
    • (1996) J. R. Stat. Soc. Ser. B: Meth. , pp. 267-288
    • Tibshirani, R.1
  • 22
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for lasso penalized regression
    • Wu T.T., Lange K. Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat. 2008, 224-244.
    • (2008) Ann. Appl. Stat. , pp. 224-244
    • Wu, T.T.1    Lange, K.2
  • 23
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies I., Defrise M., De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 2004, 57(11):1413-1457.
    • (2004) Comm. Pure Appl. Math. , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 27
    • 36749005582 scopus 로고    scopus 로고
    • A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration
    • Bioucas-Dias J., Figueiredo M. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 2007, 16(12):2992-3004.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.12 , pp. 2992-3004
    • Bioucas-Dias, J.1    Figueiredo, M.2
  • 28
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41(3):613-627.
    • (1995) IEEE Trans. Inf. Theory , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.L.1
  • 32
    • 84901269374 scopus 로고    scopus 로고
    • A non-linear mapping approach to stain normalisation in digital histopathology images using image-specific colour deconvolution
    • Khan A.M., Rajpoot N., Treanor D., Magee D. A non-linear mapping approach to stain normalisation in digital histopathology images using image-specific colour deconvolution. IEEE Trans. Biomed. Eng. 2014, 61(6):1729-1738.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , Issue.6 , pp. 1729-1738
    • Khan, A.M.1    Rajpoot, N.2    Treanor, D.3    Magee, D.4
  • 34
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5:1457-1469.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 37
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(5500):2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 38
    • 84874608810 scopus 로고    scopus 로고
    • Locality constrained dictionary learning for nonlinear dimensionality reduction
    • Zhou Y., Barner K. Locality constrained dictionary learning for nonlinear dimensionality reduction. IEEE Signal Process. Lett. 2013, 20(4):335-338.
    • (2013) IEEE Signal Process. Lett. , vol.20 , Issue.4 , pp. 335-338
    • Zhou, Y.1    Barner, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.