메뉴 건너뛰기




Volumn 41, Issue 1-2, 2013, Pages 581-597

Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension

Author keywords

Adaptive wavelet threshold; Correlation dimension; Engine fault diagnosis; Ensemble empirical mode decomposition; Signal processing

Indexed keywords

ADAPTIVE WAVELET PACKETS; ADAPTIVE WAVELET THRESHOLDS; CORRELATION DIMENSIONS; DIFFERENT OPERATING CONDITIONS; ENGINE CONDITION MONITORING; ENSEMBLE EMPIRICAL MODE DECOMPOSITION; ENSEMBLE EMPIRICAL MODE DECOMPOSITIONS (EEMD); NON-STATIONARY VIBRATION SIGNALS;

EID: 84885590616     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2013.07.009     Document Type: Article
Times cited : (143)

References (33)
  • 1
    • 30344464101 scopus 로고    scopus 로고
    • Continuous wavelets transform technique for fault signal diagnosis of internal combustion engines
    • Jian-Da Wu, and Jien-Chen Chen Continuous wavelets transform technique for fault signal diagnosis of internal combustion engines NDT&E International 39 2006 304 311
    • (2006) NDT&E International , vol.39 , pp. 304-311
    • Wu, J.-D.1    Chen, J.-C.2
  • 2
    • 70350666200 scopus 로고    scopus 로고
    • On the wavelet-fractal nonlinear damage diagnosis of mechanical systems
    • (11 pp.)
    • Maosen Cao, and Pizhong Qiao On the wavelet-fractal nonlinear damage diagnosis of mechanical systems Smart Materials and Structures 18 2009 085022 (11 pp.)
    • (2009) Smart Materials and Structures , vol.18 , pp. 085022
    • Cao, M.1    Qiao, P.2
  • 5
    • 0041958932 scopus 로고
    • Ideal spatial adaptation via wavelet shrinkage
    • D.L. Donoho, and I.M. Johnstone Ideal spatial adaptation via wavelet shrinkage Biometrika 81 1994 425 455
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 7
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • N.E. Huang, Z. Shen, and S.R. Long The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proceedings of the Royal Society of London 454 1998 903 995
    • (1998) Proceedings of the Royal Society of London , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 8
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise assisted data analysis method
    • Z.H. Wu, and N.E. Huang Ensemble empirical mode decomposition: a noise assisted data analysis method Advances in Adaptive Data Analysis 1 2009 1 41
    • (2009) Advances in Adaptive Data Analysis , vol.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 9
    • 0030145203 scopus 로고    scopus 로고
    • Using de correlation dimension for vibration fault diagnosis of rolling element bearings - I. Basic concepts
    • D. Logan, and J. Mathew Using de correlation dimension for vibration fault diagnosis of rolling element bearings - I. Basic concepts Mechanical Systems and Signal Processing 10 1996 241 250
    • (1996) Mechanical Systems and Signal Processing , vol.10 , pp. 241-250
    • Logan, D.1    Mathew, J.2
  • 10
    • 0030141766 scopus 로고    scopus 로고
    • Using de correlation dimension for vibration fault diagnosis of rolling element bearings - II. Selection of experimental parameters
    • D. Logan, and J. Mathew Using de correlation dimension for vibration fault diagnosis of rolling element bearings - II. Selection of experimental parameters Mechanical Systems and Signal Processing 10 1996 251 264
    • (1996) Mechanical Systems and Signal Processing , vol.10 , pp. 251-264
    • Logan, D.1    Mathew, J.2
  • 11
    • 0001792009 scopus 로고    scopus 로고
    • The application of correlation dimension in gearbox condition monitoring
    • J.D. Jiang, J. Chen, and L.S. Qu The application of correlation dimension in gearbox condition monitoring Journal of Sound and Vibration 23 1999 529 542
    • (1999) Journal of Sound and Vibration , vol.23 , pp. 529-542
    • Jiang, J.D.1    Chen, J.2    Qu, L.S.3
  • 12
    • 0033734754 scopus 로고    scopus 로고
    • The use of correlation dimension in condition monitoring of systems with clearance
    • C. Craig, R.D. Neilson, and J. Penman The use of correlation dimension in condition monitoring of systems with clearance Journal of Sound and Vibration 231 2000 1 17
    • (2000) Journal of Sound and Vibration , vol.231 , pp. 1-17
    • Craig, C.1    Neilson, R.D.2    Penman, J.3
  • 13
    • 80054710270 scopus 로고    scopus 로고
    • Robust incipient fault identification of aircraft engine rotor based on wavelet and fraction
    • Zhongsheng Wang, and Hongkai Jiang Robust incipient fault identification of aircraft engine rotor based on wavelet and fraction Aerospace Science and Technology 14 2010 221 224
    • (2010) Aerospace Science and Technology , vol.14 , pp. 221-224
    • Wang, Z.1    Jiang, H.2
  • 15
    • 0001419549 scopus 로고
    • Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding
    • K. Fraedrich, and R. Wang Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding Physica D 65 1993 373 398
    • (1993) Physica D , vol.65 , pp. 373-398
    • Fraedrich, K.1    Wang, R.2
  • 16
    • 79952442620 scopus 로고    scopus 로고
    • Engine ignition signal diagnosis with wavelet packet transform and multi-class least squares support vector machines
    • C.M. Vong, and P.K. Wong Engine ignition signal diagnosis with wavelet packet transform and multi-class least squares support vector machines Expert Systems with Applications 38 2011 8563 8570
    • (2011) Expert Systems with Applications , vol.38 , pp. 8563-8570
    • Vong, C.M.1    Wong, P.K.2
  • 19
    • 33750469388 scopus 로고    scopus 로고
    • Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition
    • Bang-hua Yang, Guo-zheng Yan, Rong-guo Yan, and Ting Wu Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition Medical Engineering & Physics 29 2007 48 53
    • (2007) Medical Engineering & Physics , vol.29 , pp. 48-53
    • Yang, B.-H.1    Yan, G.-Z.2    Yan, R.-G.3    Wu, T.4
  • 23
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise assisted data analysis method
    • Z.H. Wu, and N.E. Huang Ensemble empirical mode decomposition: a noise assisted data analysis method Advances in Adaptive Data Analysis 1 2009 1 41
    • (2009) Advances in Adaptive Data Analysis , vol.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 24
    • 85115671775 scopus 로고    scopus 로고
    • EMD equivalent filter banks, from interpretation to applications
    • N.E. Huang, S.S.P. Shen (Eds.) World Scientific, Singapore
    • P. Flandrin, P. Goncalves, G. Rilling, EMD equivalent filter banks, from interpretation to applications, in: N.E. Huang, S.S.P. Shen (Eds.), Hilbert-Huang Transform: Introduction and Applications, World Scientific, Singapore 360 (2005) pp. 67-87
    • (2005) Hilbert-Huang Transform: Introduction and Applications , vol.360 , pp. 67-87
    • Flandrin, P.1    Goncalves, P.2    Rilling, G.3
  • 25
    • 33646981873 scopus 로고
    • Measuring the strangeness of strange attractors
    • P Grassberger, and I. Procaccia Measuring the strangeness of strange attractors Physical Review Letters 50 5 1983 346 349
    • (1983) Physical Review Letters , vol.50 , Issue.5 , pp. 346-349
    • Grassberger, P.1    Procaccia, I.2
  • 26
    • 0001419549 scopus 로고
    • Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding
    • K. Fraedrich, and R. Wang Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding Physica D 65 1993 373 398
    • (1993) Physica D , vol.65 , pp. 373-398
    • Fraedrich, K.1    Wang, R.2
  • 28
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • Youyun Zhang Junyan Yang, and Yongsheng Zhu Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension Mechanical Systems and Signal Processing 21 2007 2012 2024
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2012-2024
    • Junyan Yang, Y.Z.1    Zhu, Y.2
  • 29
    • 0002624834 scopus 로고    scopus 로고
    • State space reconstruction parameters in the analysis of chaotic time series - The role of the time window length
    • D. Kugiumtzis State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length Physica D: Nonlinear Phenomena 95 1 1996 13 28
    • (1996) Physica D: Nonlinear Phenomena , vol.95 , Issue.1 , pp. 13-28
    • Kugiumtzis, D.1
  • 30
    • 0040315167 scopus 로고    scopus 로고
    • Nonlinear dynamics, delay times, and embedding windows
    • H.S. Kim, R. Eykholt, and J.D. Salas Nonlinear dynamics, delay times, and embedding windows Physica D: Nonlinear Phenomena 127 1-2 1999 48 60
    • (1999) Physica D: Nonlinear Phenomena , vol.127 , Issue.12 , pp. 48-60
    • Kim, H.S.1    Eykholt, R.2    Salas, J.D.3
  • 31
    • 84885599327 scopus 로고    scopus 로고
    • For nonlinear time series embedded delay time and delay time window of C-C average method
    • Xu zili, and Wang yiyang For nonlinear time series embedded delay time and delay time window of C-C average method Journal of Sichuan University (Engineering Sciences) 39 01 2007 151 155
    • (2007) Journal of Sichuan University (Engineering Sciences) , vol.39 , Issue.1 , pp. 151-155
    • Zili, X.1    Yiyang, W.2
  • 32
    • 84885626351 scopus 로고    scopus 로고
    • Phase space reconstruction parameter selection based on the improvement of C-C method
    • Lu Zhengbo Phase space reconstruction parameter selection based on the improvement of C-C method Journal of System Simulation 19 2007 11
    • (2007) Journal of System Simulation , vol.19 , pp. 11
    • Zhengbo, L.1
  • 33
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • L. Cao Practical method for determining the minimum embedding dimension of a scalar time series Physica D: Nonlinear Phenomena 110 1-2 1997 43 50
    • (1997) Physica D: Nonlinear Phenomena , vol.110 , Issue.12 , pp. 43-50
    • Cao, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.