-
1
-
-
0006180620
-
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering
-
Schaffer R., et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 1998, 93:1219-1229.
-
(1998)
Cell
, vol.93
, pp. 1219-1229
-
-
Schaffer, R.1
-
2
-
-
0032568796
-
Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression
-
Wang Z.Y., Tobin E.M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 1998, 93:1207-1217.
-
(1998)
Cell
, vol.93
, pp. 1207-1217
-
-
Wang, Z.Y.1
Tobin, E.M.2
-
3
-
-
0034604423
-
Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog
-
Strayer C., et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 2000, 289:768-771.
-
(2000)
Science
, vol.289
, pp. 768-771
-
-
Strayer, C.1
-
4
-
-
0035800467
-
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
-
Alabadí D., et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001, 293:880-883.
-
(2001)
Science
, vol.293
, pp. 880-883
-
-
Alabadí, D.1
-
5
-
-
84857383458
-
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
-
Gendron J.M., et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3167-3172.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 3167-3172
-
-
Gendron, J.M.1
-
6
-
-
84859508042
-
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
-
Huang W., et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 2012, 336:75-79.
-
(2012)
Science
, vol.336
, pp. 75-79
-
-
Huang, W.1
-
7
-
-
77952919484
-
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock
-
Nakamichi N., et al. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 2010, 22:594-605.
-
(2010)
Plant Cell
, vol.22
, pp. 594-605
-
-
Nakamichi, N.1
-
8
-
-
11844289579
-
Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock
-
Farré E.M., et al. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol. 2005, 15:47-54.
-
(2005)
Curr. Biol.
, vol.15
, pp. 47-54
-
-
Farré, E.M.1
-
9
-
-
79151483227
-
LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock
-
Helfer A., et al. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr. Biol. 2011, 21:126-133.
-
(2011)
Curr. Biol.
, vol.21
, pp. 126-133
-
-
Helfer, A.1
-
10
-
-
79960621365
-
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth
-
Nusinow D.A., et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 2011, 475:398-402.
-
(2011)
Nature
, vol.475
, pp. 398-402
-
-
Nusinow, D.A.1
-
11
-
-
84897418780
-
Wheels within wheels: the plant circadian system
-
Hsu P.Y., Harmer S.L. Wheels within wheels: the plant circadian system. Trends Plant Sci. 2014, 19:240-249.
-
(2014)
Trends Plant Sci.
, vol.19
, pp. 240-249
-
-
Hsu, P.Y.1
Harmer, S.L.2
-
12
-
-
44649104433
-
Circadian clock function in Arabidopsis thaliana: time beyond transcription
-
Más P. Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends Cell Biol. 2008, 18:273-281.
-
(2008)
Trends Cell Biol.
, vol.18
, pp. 273-281
-
-
Más, P.1
-
13
-
-
84896876294
-
Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis
-
Seo P.J., Mas P. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis. Plant Cell 2014, 26:79-87.
-
(2014)
Plant Cell
, vol.26
, pp. 79-87
-
-
Seo, P.J.1
Mas, P.2
-
14
-
-
0242578405
-
Enhanced fitness conferred by naturally occurring variation in the circadian clock
-
Michael T.P., et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 2003, 302:1049-1053.
-
(2003)
Science
, vol.302
, pp. 1049-1053
-
-
Michael, T.P.1
-
15
-
-
22744451756
-
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
-
Dodd A.N., et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005, 309:630-633.
-
(2005)
Science
, vol.309
, pp. 630-633
-
-
Dodd, A.N.1
-
16
-
-
51749110466
-
Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
-
Covington M.F., et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008, 9:R130.
-
(2008)
Genome Biol.
, vol.9
, pp. R130
-
-
Covington, M.F.1
-
17
-
-
40849124054
-
Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants
-
Mizuno T., Yamashino T. Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol. 2008, 49:481-487.
-
(2008)
Plant Cell Physiol.
, vol.49
, pp. 481-487
-
-
Mizuno, T.1
Yamashino, T.2
-
18
-
-
34548206704
-
The circadian clock regulates auxin signaling and responses in Arabidopsis
-
Covington M.F., Harmer S.L. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol. 2007, 5:e222.
-
(2007)
PLoS Biol.
, vol.5
, pp. e222
-
-
Covington, M.F.1
Harmer, S.L.2
-
19
-
-
66649120489
-
Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways
-
Pan Y., et al. Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways. Plant Physiol. 2009, 150:858-878.
-
(2009)
Plant Physiol.
, vol.150
, pp. 858-878
-
-
Pan, Y.1
-
20
-
-
66349124175
-
Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination
-
Fukushima A., et al. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:7251-7256.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 7251-7256
-
-
Fukushima, A.1
-
21
-
-
84858681457
-
Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior
-
Goodspeed D., et al. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:4674-4677.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 4674-4677
-
-
Goodspeed, D.1
-
22
-
-
79959327617
-
Circadian oscillation of gibberellin signaling in Arabidopsis
-
Arana M.V., et al. Circadian oscillation of gibberellin signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9292-9297.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 9292-9297
-
-
Arana, M.V.1
-
23
-
-
84899950884
-
Diurnal oscillations of soybean circadian clock and drought responsive genes
-
Marcolino-Gomes J., et al. Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS ONE 2014, 9:e86402.
-
(2014)
PLoS ONE
, vol.9
, pp. e86402
-
-
Marcolino-Gomes, J.1
-
24
-
-
77956085371
-
Time of day shapes Arabidopsis drought transcriptomes
-
Wilkins O., et al. Time of day shapes Arabidopsis drought transcriptomes. Plant J. 2010, 63:715-727.
-
(2010)
Plant J.
, vol.63
, pp. 715-727
-
-
Wilkins, O.1
-
25
-
-
43449118706
-
Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses
-
Kant P., et al. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Plant Cell Environ. 2008, 31:697-714.
-
(2008)
Plant Cell Environ.
, vol.31
, pp. 697-714
-
-
Kant, P.1
-
26
-
-
33846798370
-
Gene networks involved in drought stress response and tolerance
-
Shinozaki K., Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 2007, 58:221-227.
-
(2007)
J. Exp. Bot.
, vol.58
, pp. 221-227
-
-
Shinozaki, K.1
Yamaguchi-Shinozaki, K.2
-
28
-
-
33846601810
-
Modulation of environmental responses of plants by circadian clocks
-
Hotta C.T., et al. Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ. 2007, 30:333-349.
-
(2007)
Plant Cell Environ.
, vol.30
, pp. 333-349
-
-
Hotta, C.T.1
-
29
-
-
0029137875
-
ABA xylem concentrations determine maximum daily leaf conductance of field-grown Vitis vinifera L. plants
-
Correia M.J., et al. ABA xylem concentrations determine maximum daily leaf conductance of field-grown Vitis vinifera L. plants. Plant Cell Environ. 1995, 18:511-521.
-
(1995)
Plant Cell Environ.
, vol.18
, pp. 511-521
-
-
Correia, M.J.1
-
30
-
-
79955651864
-
Evolution of abscisic acid synthesis and signaling mechanisms
-
Hauser F., et al. Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 2011, 21:R346-R355.
-
(2011)
Curr. Biol.
, vol.21
, pp. R346-R355
-
-
Hauser, F.1
-
31
-
-
84897007656
-
Interplay between circadian rhythm, time of the day and osmotic stress constraints in the regulation of the expression of a Solanum Double B-box gene
-
Kiełbowicz-Matuk A., et al. Interplay between circadian rhythm, time of the day and osmotic stress constraints in the regulation of the expression of a Solanum Double B-box gene. Ann. Bot. (Lond.) 2014, 113:831-842.
-
(2014)
Ann. Bot. (Lond.)
, vol.113
, pp. 831-842
-
-
Kiełbowicz-Matuk, A.1
-
32
-
-
0742270773
-
Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins
-
Lopez F., et al. Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol. 2003, 44:1384-1395.
-
(2003)
Plant Cell Physiol.
, vol.44
, pp. 1384-1395
-
-
Lopez, F.1
-
33
-
-
71449108624
-
TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought
-
Legnaioli T., et al. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J. 2009, 28:3745-3757.
-
(2009)
EMBO J.
, vol.28
, pp. 3745-3757
-
-
Legnaioli, T.1
-
34
-
-
60449116819
-
Interactions between circadian and hormonal signalling in plants
-
Robertson F.C., et al. Interactions between circadian and hormonal signalling in plants. Plant Mol. Biol. 2009, 69:419-427.
-
(2009)
Plant Mol. Biol.
, vol.69
, pp. 419-427
-
-
Robertson, F.C.1
-
35
-
-
73249145845
-
Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis
-
Mustroph A., et al. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:18843-18848.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 18843-18848
-
-
Mustroph, A.1
-
36
-
-
71049138076
-
The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis
-
Kidokoro S., et al. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol. 2009, 151:2046-2057.
-
(2009)
Plant Physiol.
, vol.151
, pp. 2046-2057
-
-
Kidokoro, S.1
-
37
-
-
0034095041
-
Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds
-
Kurup S., et al. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J. 2000, 21:143-155.
-
(2000)
Plant J.
, vol.21
, pp. 143-155
-
-
Kurup, S.1
-
38
-
-
61449135764
-
High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4
-
Koini M.A., et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 2009, 19:408-413.
-
(2009)
Curr. Biol.
, vol.19
, pp. 408-413
-
-
Koini, M.A.1
-
39
-
-
84875068918
-
Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs
-
Pokhilko A., et al. Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs. BMC Syst. Biol. 2013, 7:23.
-
(2013)
BMC Syst. Biol.
, vol.7
, pp. 23
-
-
Pokhilko, A.1
-
40
-
-
84884909996
-
Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7
-
Liu T., et al. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant J. 2013, 76:101-114.
-
(2013)
Plant J.
, vol.76
, pp. 101-114
-
-
Liu, T.1
-
41
-
-
63049122216
-
Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response
-
Nakamichi N., et al. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol. 2009, 50:447-462.
-
(2009)
Plant Cell Physiol.
, vol.50
, pp. 447-462
-
-
Nakamichi, N.1
-
42
-
-
84885314855
-
TIME FOR COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis thaliana
-
Sanchez-Villarreal A., et al. TIME FOR COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis thaliana. Plant J. 2013, 76:188-200.
-
(2013)
Plant J.
, vol.76
, pp. 188-200
-
-
Sanchez-Villarreal, A.1
-
43
-
-
0030873319
-
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana
-
Heintzen C., et al. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:8515-8520.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 8515-8520
-
-
Heintzen, C.1
-
44
-
-
47749089005
-
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana
-
Kim J.S., et al. Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 2008, 55:455-466.
-
(2008)
Plant J.
, vol.55
, pp. 455-466
-
-
Kim, J.S.1
-
45
-
-
34248164877
-
AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis
-
Cao S., et al. AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis. Cell. Mol. Biol. Lett. 2006, 11:526-535.
-
(2006)
Cell. Mol. Biol. Lett.
, vol.11
, pp. 526-535
-
-
Cao, S.1
-
46
-
-
84901049336
-
Tolerance to drought and salt stress in plants: Unraveling the signaling networks
-
Golldack D., et al. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014, 5:151.
-
(2014)
Front. Plant Sci.
, vol.5
, pp. 151
-
-
Golldack, D.1
-
47
-
-
0037062514
-
+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3
-
+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:8436-8441.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 8436-8441
-
-
Qiu, Q.S.1
-
48
-
-
84875581613
-
Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis
-
Kim W.Y., et al. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 2013, 4:1352.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1352
-
-
Kim, W.Y.1
-
49
-
-
84898909058
-
Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana
-
Tsuzuki T., et al. Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana. Front. Plant Sci. 2013, 4:440.
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 440
-
-
Tsuzuki, T.1
-
50
-
-
84899621457
-
Osmotic stress at the barley root affects expression of circadian clock genes in the shoot
-
Habte E., et al. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant Cell Environ. 2014, 37:1321-1327.
-
(2014)
Plant Cell Environ.
, vol.37
, pp. 1321-1327
-
-
Habte, E.1
-
51
-
-
79956221120
-
Rice WNK1 is regulated by abiotic stress and involved in internal circadian rhythm
-
Kumar K., et al. Rice WNK1 is regulated by abiotic stress and involved in internal circadian rhythm. Plant Signal. Behav. 2011, 6:316-320.
-
(2011)
Plant Signal. Behav.
, vol.6
, pp. 316-320
-
-
Kumar, K.1
-
52
-
-
37249077411
-
The Arabidopsis circadian clock incorporates a cADPR-based feedback loop
-
Dodd A.N., et al. The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 2007, 318:1789-1792.
-
(2007)
Science
, vol.318
, pp. 1789-1792
-
-
Dodd, A.N.1
-
53
-
-
84879174830
-
Circadian clock-regulated physiological outputs: dynamic responses in nature
-
Kinmonth-Schultz H.A., et al. Circadian clock-regulated physiological outputs: dynamic responses in nature. Semin. Cell Dev. Biol. 2013, 24:407-413.
-
(2013)
Semin. Cell Dev. Biol.
, vol.24
, pp. 407-413
-
-
Kinmonth-Schultz, H.A.1
-
54
-
-
0032213180
-
Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression
-
Gilmour S.J., et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998, 16:433-442.
-
(1998)
Plant J.
, vol.16
, pp. 433-442
-
-
Gilmour, S.J.1
-
55
-
-
84879369383
-
Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation
-
Kurepin L.V., et al. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int. J. Mol. Sci. 2013, 14:12729-12763.
-
(2013)
Int. J. Mol. Sci.
, vol.14
, pp. 12729-12763
-
-
Kurepin, L.V.1
-
56
-
-
18744413036
-
Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock
-
Fowler S.G., et al. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 2005, 137:961-968.
-
(2005)
Plant Physiol.
, vol.137
, pp. 961-968
-
-
Fowler, S.G.1
-
57
-
-
84887858789
-
CBF gene expression in peach leaf and bark tissues is gated by a circadian clock
-
Artlip T.S., et al. CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Tree Physiol. 2013, 33:866-877.
-
(2013)
Tree Physiol.
, vol.33
, pp. 866-877
-
-
Artlip, T.S.1
-
58
-
-
79955551575
-
Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis
-
Dong M.A., et al. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7241-7246.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 7241-7246
-
-
Dong, M.A.1
-
59
-
-
70349852402
-
A role for circadian evening elements in cold-regulated gene expression in Arabidopsis
-
Mikkelsen M.D., Thomashow M.F. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 2009, 60:328-339.
-
(2009)
Plant J.
, vol.60
, pp. 328-339
-
-
Mikkelsen, M.D.1
Thomashow, M.F.2
-
60
-
-
84885220144
-
Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock
-
Keily J., et al. Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock. Plant J. 2013, 76:247-257.
-
(2013)
Plant J.
, vol.76
, pp. 247-257
-
-
Keily, J.1
-
61
-
-
33845548755
-
Time of day modulates low-temperature Ca signals in Arabidopsis
-
Dodd A.N., et al. Time of day modulates low-temperature Ca signals in Arabidopsis. Plant J. 2006, 48:962-973.
-
(2006)
Plant J.
, vol.48
, pp. 962-973
-
-
Dodd, A.N.1
-
62
-
-
50649124284
-
Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome
-
Bieniawska Z., et al. Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol. 2008, 147:263-279.
-
(2008)
Plant Physiol.
, vol.147
, pp. 263-279
-
-
Bieniawska, Z.1
-
63
-
-
84867656050
-
Transcriptional repressor PRR5 directly regulates clock-output pathways
-
Nakamichi N., et al. Transcriptional repressor PRR5 directly regulates clock-output pathways. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:17123-17128.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 17123-17128
-
-
Nakamichi, N.1
-
64
-
-
28244451860
-
Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis
-
Cao S., et al. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 2005, 24:683-690.
-
(2005)
Plant Cell Rep.
, vol.24
, pp. 683-690
-
-
Cao, S.1
-
65
-
-
33947416625
-
Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency
-
Cao S., et al. Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency. Biol. Plant 2007, 51:359-362.
-
(2007)
Biol. Plant
, vol.51
, pp. 359-362
-
-
Cao, S.1
-
66
-
-
55849115259
-
Overall alteration of circadian clock gene expression in the chestnut cold response
-
Ibañez C., et al. Overall alteration of circadian clock gene expression in the chestnut cold response. PLoS ONE 2008, 3:e3567.
-
(2008)
PLoS ONE
, vol.3
, pp. e3567
-
-
Ibañez, C.1
-
67
-
-
84891504586
-
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 is required for circadian periodicity through the promotion of nucleo-cytoplasmic mRNA export in Arabidopsis
-
MacGregor D.R., et al. HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 is required for circadian periodicity through the promotion of nucleo-cytoplasmic mRNA export in Arabidopsis. Plant Cell 2013, 25:4391-4404.
-
(2013)
Plant Cell
, vol.25
, pp. 4391-4404
-
-
MacGregor, D.R.1
-
68
-
-
84904066428
-
Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis
-
Chow B.Y., et al. Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis. Curr. Biol. 2014, 24:1518-1524.
-
(2014)
Curr. Biol.
, vol.24
, pp. 1518-1524
-
-
Chow, B.Y.1
-
69
-
-
84863089087
-
Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes
-
Filichkin S.A., Mockler T.C. Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. Biol. Direct 2012, 7:20.
-
(2012)
Biol. Direct
, vol.7
, pp. 20
-
-
Filichkin, S.A.1
Mockler, T.C.2
-
70
-
-
84864440018
-
A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis
-
Seo P.J., et al. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 2012, 24:2427-2442.
-
(2012)
Plant Cell
, vol.24
, pp. 2427-2442
-
-
Seo, P.J.1
-
71
-
-
84860128193
-
Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes
-
James A.B., et al. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 2012, 24:961-981.
-
(2012)
Plant Cell
, vol.24
, pp. 961-981
-
-
James, A.B.1
-
72
-
-
84867026807
-
SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis
-
Wang X., et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell 2012, 24:3278-3295.
-
(2012)
Plant Cell
, vol.24
, pp. 3278-3295
-
-
Wang, X.1
-
73
-
-
84908042429
-
Role for LSM genes in the regulation of circadian rhythms
-
Perez-Santángelo S., et al. Role for LSM genes in the regulation of circadian rhythms. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:15166-15171.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 15166-15171
-
-
Perez-Santángelo, S.1
-
74
-
-
70849109890
-
Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions
-
Roden L.C., Ingle R.A. Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 2009, 21:2546-2552.
-
(2009)
Plant Cell
, vol.21
, pp. 2546-2552
-
-
Roden, L.C.1
Ingle, R.A.2
-
75
-
-
1642463788
-
Innate immunity in plants and animals: striking similarities and obvious differences
-
Nürnberger T., et al. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 2004, 198:249-266.
-
(2004)
Immunol. Rev.
, vol.198
, pp. 249-266
-
-
Nürnberger, T.1
-
76
-
-
80055107434
-
Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock
-
Bhardwaj V., et al. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLoS ONE 2011, 6:e26968.
-
(2011)
PLoS ONE
, vol.6
, pp. e26968
-
-
Bhardwaj, V.1
-
77
-
-
33751100626
-
The plant immune system
-
Jones J.D., Dangl J.L. The plant immune system. Nature 2006, 444:323-329.
-
(2006)
Nature
, vol.444
, pp. 323-329
-
-
Jones, J.D.1
Dangl, J.L.2
-
78
-
-
79551662808
-
Timing of plant immune responses by a central circadian regulator
-
Wang W., et al. Timing of plant immune responses by a central circadian regulator. Nature 2011, 470:110-114.
-
(2011)
Nature
, vol.470
, pp. 110-114
-
-
Wang, W.1
-
79
-
-
33244470640
-
Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression
-
Elhafez D., et al. Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression. Plant Cell Physiol. 2006, 47:43-54.
-
(2006)
Plant Cell Physiol.
, vol.47
, pp. 43-54
-
-
Elhafez, D.1
-
80
-
-
0038019518
-
Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica)
-
Slusarenko A.J., Schlaich N.L. Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol. Plant Pathol. 2003, 4:159-170.
-
(2003)
Mol. Plant Pathol.
, vol.4
, pp. 159-170
-
-
Slusarenko, A.J.1
Schlaich, N.L.2
-
81
-
-
84879528088
-
Crosstalk between the circadian clock and innate immunity in Arabidopsis
-
Zhang C., et al. Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog. 2013, 9:e1003370.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003370
-
-
Zhang, C.1
-
82
-
-
84875222858
-
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7
-
Nicaise V., et al. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J. 2013, 32:701-712.
-
(2013)
EMBO J.
, vol.32
, pp. 701-712
-
-
Nicaise, V.1
-
83
-
-
0031106073
-
Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley
-
Molina A., et al. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 1997, 33:803-810.
-
(1997)
Plant Mol. Biol.
, vol.33
, pp. 803-810
-
-
Molina, A.1
-
84
-
-
33645830746
-
A circadian rhythm-regulated tomato gene is induced by arachidonic acid and Phythophthora infestans infection
-
Weyman P.D., et al. A circadian rhythm-regulated tomato gene is induced by arachidonic acid and Phythophthora infestans infection. Plant Physiol. 2006, 140:235-248.
-
(2006)
Plant Physiol.
, vol.140
, pp. 235-248
-
-
Weyman, P.D.1
-
85
-
-
1442291028
-
PCC1: a merging point for pathogen defence and circadian signalling in Arabidopsis
-
Sauerbrunn N., Schlaich N.L. PCC1: a merging point for pathogen defence and circadian signalling in Arabidopsis. Planta 2004, 218:552-561.
-
(2004)
Planta
, vol.218
, pp. 552-561
-
-
Sauerbrunn, N.1
Schlaich, N.L.2
-
86
-
-
84855533379
-
Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens
-
Antico C.J., et al. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front. Biol. 2012, 7:48.
-
(2012)
Front. Biol.
, vol.7
, pp. 48
-
-
Antico, C.J.1
-
87
-
-
84864494656
-
TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis
-
Shin J., et al. TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell 2012, 24:2470-2482.
-
(2012)
Plant Cell
, vol.24
, pp. 2470-2482
-
-
Shin, J.1
-
88
-
-
84873545549
-
Circadian control of jasmonates and salicylates: the clock role in plant defense
-
Goodspeed D., et al. Circadian control of jasmonates and salicylates: the clock role in plant defense. Plant Signal. Behav. 2013, 8:e23123.
-
(2013)
Plant Signal. Behav.
, vol.8
, pp. e23123
-
-
Goodspeed, D.1
-
89
-
-
84879906441
-
Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling
-
Goodspeed D., et al. Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling. Curr. Biol. 2013, 23:1235-1241.
-
(2013)
Curr. Biol.
, vol.23
, pp. 1235-1241
-
-
Goodspeed, D.1
|