메뉴 건너뛰기




Volumn 21, Issue 5, 2015, Pages 595-608

Accounting for spatially biased sampling effort in presence-only species distribution modelling

Author keywords

Biased sampling effort; Maxent bias file; Presence only data; Prior sample weight; Species distribution modelling; Virtual species

Indexed keywords

ACCURACY ASSESSMENT; BRYOPHYTE; BUTTERFLY; DATA SET; ECOLOGICAL MODELING; NUMERICAL MODEL; POPULATION DISTRIBUTION; PREDICTION; RARE SPECIES; SAMPLING; SPATIAL ANALYSIS; TAXONOMY; VASCULAR PLANT; WEIGHT;

EID: 84926286790     PISSN: 13669516     EISSN: 14724642     Source Type: Journal    
DOI: 10.1111/ddi.12279     Document Type: Article
Times cited : (142)

References (78)
  • 1
    • 84926311743 scopus 로고    scopus 로고
    • ABMI Wall-to-wall land cover map
    • Available at:(accessed 12 August 2014).
    • Alberta Biodiversity Monitoring Institute (2012) ABMI Wall-to-wall land cover map. Available at: http://www.abmi.ca/abmi/rawdata/geospatial/gisdownload.jsp?categoryId=2&subcategoryId=4 (accessed 12 August 2014).
    • (2012)
  • 2
    • 33750525529 scopus 로고    scopus 로고
    • Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
    • Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
    • (2006) Journal of Applied Ecology , vol.43 , pp. 1223-1232
    • Allouche, O.1    Tsoar, A.2    Kadmon, R.3
  • 3
    • 0038025507 scopus 로고    scopus 로고
    • Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela
    • Anderson, R.P. (2003) Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela. Journal of Biogeography, 30, 591-605.
    • (2003) Journal of Biogeography , vol.30 , pp. 591-605
    • Anderson, R.P.1
  • 4
    • 33748529602 scopus 로고    scopus 로고
    • Five (or so) challenges for species distribution modelling
    • Araújo, M.B. & Guisan, A. (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677-1688.
    • (2006) Journal of Biogeography , vol.33 , pp. 1677-1688
    • Araújo, M.B.1    Guisan, A.2
  • 6
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
    • Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101-118.
    • (2002) Ecological Modelling , vol.157 , pp. 101-118
    • Austin, M.P.1
  • 9
    • 84926305837 scopus 로고    scopus 로고
    • Spatial Ecology LLC. Available at:(accessed 14 December 2012).
    • Beyer, H.L. (2012) Geospatial modelling environment. Spatial Ecology LLC. Available at: http://www.spatialecology.com/gme/ (accessed 14 December 2012).
    • (2012)
    • Beyer, H.L.1
  • 11
    • 78650417427 scopus 로고    scopus 로고
    • Geographic sampling bias in the South African Frog Atlas Project: implications for conservation planning
    • Botts, E.A., Erasmus, B.F.N. & Alexander, G.J. (2011) Geographic sampling bias in the South African Frog Atlas Project: implications for conservation planning. Biodiversity and Conservation, 20, 119-139.
    • (2011) Biodiversity and Conservation , vol.20 , pp. 119-139
    • Botts, E.A.1    Erasmus, B.F.N.2    Alexander, G.J.3
  • 14
    • 77956756355 scopus 로고    scopus 로고
    • International Food Policy Research Institute (IPFRI), the World Bank & Centro Internacional de Agricultura Tropical (CIAT)
    • CIESIN, Columbia University, Palisades, NY. Available at:(accessed 12 August 2014).
    • Center for International Earth Science Information Network (CIESIN), International Food Policy Research Institute (IPFRI), the World Bank & Centro Internacional de Agricultura Tropical (CIAT) (2004) Global Rural-Urban Mapping Project (GRUMP): urban/rural population grids. CIESIN, Columbia University, Palisades, NY. Available at: http://sedac.ciesin.columbia.edu/data/collection/grump-v1 (accessed 12 August 2014).
    • (2004) Global Rural-Urban Mapping Project (GRUMP): urban/rural population grids
  • 15
    • 84856759663 scopus 로고    scopus 로고
    • Effects of species' traits and data characteristics on distribution models of threatened invertebrates
    • Chefaoui, R.M., Lobo, J.M. & Hortal, J. (2011) Effects of species' traits and data characteristics on distribution models of threatened invertebrates. Animal Biodiversity and Conservation, 34, 229-247.
    • (2011) Animal Biodiversity and Conservation , vol.34 , pp. 229-247
    • Chefaoui, R.M.1    Lobo, J.M.2    Hortal, J.3
  • 16
    • 0033824948 scopus 로고    scopus 로고
    • Bias in butterfly distribution maps: the influence of hot spots and recorder's home range
    • Dennis, R. & Thomas, C. (2000) Bias in butterfly distribution maps: the influence of hot spots and recorder's home range. Journal of Insect Conservation, 4, 73-77.
    • (2000) Journal of Insect Conservation , vol.4 , pp. 73-77
    • Dennis, R.1    Thomas, C.2
  • 17
    • 80052275598 scopus 로고    scopus 로고
    • A Bayesian model for presence-only semicontinuous data, with application to prediction of abundance of Taxus Baccata in two Italian regions
    • Di Lorenzo, B., Farcomeni, A. & Golini, N. (2011) A Bayesian model for presence-only semicontinuous data, with application to prediction of abundance of Taxus Baccata in two Italian regions. Journal of Agricultural, Biological, and Environmental Statistics, 16, 339-356.
    • (2011) Journal of Agricultural, Biological, and Environmental Statistics , vol.16 , pp. 339-356
    • Di Lorenzo, B.1    Farcomeni, A.2    Golini, N.3
  • 19
    • 84864038934 scopus 로고    scopus 로고
    • Correcting sample selection bias in maximum entropy density estimation
    • (ed. by Y. Weiss, B. Scholkopf and J.C. Platt) - MIT Press, Cambridge, MA.
    • Dudík, M., Phillips, S.J. & Schapire, R.E. (2005) Correcting sample selection bias in maximum entropy density estimation. Advances in neural information processing systems 18 (ed. by Y. Weiss, B. Scholkopf and J.C. Platt), pp. 323-330. MIT Press, Cambridge, MA.
    • (2005) Advances in neural information processing systems 18 , pp. 323-330
    • Dudík, M.1    Phillips, S.J.2    Schapire, R.E.3
  • 20
    • 34250663051 scopus 로고    scopus 로고
    • Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
    • Dudík, M., Phillips, S.J. & Schapire, R.E. (2007) Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. Journal of Machine Learning Research, 8, 1217-1260.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1217-1260
    • Dudík, M.1    Phillips, S.J.2    Schapire, R.E.3
  • 21
    • 4444279167 scopus 로고    scopus 로고
    • What is Bayesian statistics?
    • Eddy, S.R. (2004) What is Bayesian statistics? Nature Biotechnology, 22, 1177-1178.
    • (2004) Nature Biotechnology , vol.22 , pp. 1177-1178
    • Eddy, S.R.1
  • 22
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models
    • Elith, J. & Graham, C.H. (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32, 66-77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 23
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: ecological explanation and prediction across space and time
    • Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697.
    • (2009) Annual Review of Ecology, Evolution, and Systematics , vol.40 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 24
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1    Graham, C.H.2    Anderson, R.P.3
  • 25
    • 1942456846 scopus 로고    scopus 로고
    • An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data
    • Engler, R., Guisan, A. & Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263-274.
    • (2004) Journal of Applied Ecology , vol.41 , pp. 263-274
    • Engler, R.1    Guisan, A.2    Rechsteiner, L.3
  • 26
    • 84926367450 scopus 로고    scopus 로고
    • Environmental Systems Research Institute
    • Redlands, CA.
    • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA.
    • (2011) ArcGIS desktop: release 10
  • 27
    • 84865315435 scopus 로고    scopus 로고
    • Available at:(accessed 12 August 2014).
    • Evans, J. (2004) Topographic ruggedness index. Available at: http://arcscripts.esri.com/details.asp?dbid=12435 (accessed 12 August 2014).
    • (2004) Topographic ruggedness index
    • Evans, J.1
  • 28
    • 0030619975 scopus 로고    scopus 로고
    • Using compile species lists to make biodiversity comparisons among regions: a test case using Oregon butterflies
    • Fagan, W.F. & Kareiva, P.M. (1997) Using compile species lists to make biodiversity comparisons among regions: a test case using Oregon butterflies. Biological Conservation, 80, 249-259.
    • (1997) Biological Conservation , vol.80 , pp. 249-259
    • Fagan, W.F.1    Kareiva, P.M.2
  • 29
    • 84901308299 scopus 로고    scopus 로고
    • Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias
    • Fourcade, Y., Engler, J.O., Rödder, D. & Secondi, J. (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One, 9, e97122.
    • (2014) PLoS One , vol.9 , pp. e97122
    • Fourcade, Y.1    Engler, J.O.2    Rödder, D.3    Secondi, J.4
  • 31
    • 76749161905 scopus 로고    scopus 로고
    • Global Biodiversity Information Facility
    • Available at:(accessed 14 December 2012).
    • GBIF (2012) Global Biodiversity Information Facility. Available at: http://data.gbif.org/welcome.htm (accessed 14 December 2012).
    • (2012)
  • 33
    • 84926356736 scopus 로고    scopus 로고
    • Bayesian modeling of presence-only data
    • PhD Thesis. Università di Roma, Sapienza.
    • Golini, N. (2012) Bayesian modeling of presence-only data. PhD Thesis. Università di Roma, Sapienza.
    • (2012)
    • Golini, N.1
  • 34
    • 84926295533 scopus 로고    scopus 로고
    • Alberta Conservation Information Management System
    • Available at:(accessed 31 August 2011).
    • Government of Alberta (2012) Alberta Conservation Information Management System. Available at: http://www.albertaparks.ca/albertaparksca/management-land-use/alberta-conservation-information-management-system-(acims).aspx (accessed 31 August 2011).
    • (2012)
  • 35
    • 84926294002 scopus 로고    scopus 로고
    • Government of Canada, Natural Resources Canada
    • Atlas of Canada 1,000,000 national frameworks data, protected areas. Available at:(accessed 12 August 2014).
    • Government of Canada, Natural Resources Canada, Canada Centre for Remote Sensing (2008) Atlas of Canada 1, 000, 000 national frameworks data, protected areas. Available at: http://www.geogratis.gc.ca/download/frameworkdata/protected_areas/ (accessed 12 August 2014).
    • (2008) Canada Centre for Remote Sensing
  • 37
    • 24344493920 scopus 로고    scopus 로고
    • Predicting species distribution: offering more than simple habitat models
    • Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.
    • (2005) Ecology Letters , vol.8 , pp. 993-1009
    • Guisan, A.1    Thuiller, W.2
  • 38
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186.
    • (2000) Ecological Modelling , vol.135 , pp. 147-186
    • Guisan, A.1    Zimmermann, N.E.2
  • 41
    • 0035891825 scopus 로고    scopus 로고
    • Assessing habitat-suitability models with a virtual species
    • Hirzel, A.H., Helfer, V. & Metral, F. (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145, 111-121.
    • (2001) Ecological Modelling , vol.145 , pp. 111-121
    • Hirzel, A.H.1    Helfer, V.2    Metral, F.3
  • 42
    • 0003337955 scopus 로고    scopus 로고
    • Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?
    • Hirzel, A.H., Hausser, J., Chessel, D. & Perrin, N. (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83, 2027-2036.
    • (2002) Ecology , vol.83 , pp. 2027-2036
    • Hirzel, A.H.1    Hausser, J.2    Chessel, D.3    Perrin, N.4
  • 43
    • 45749100416 scopus 로고    scopus 로고
    • Historical bias in biodiversity inventories affects the observed environmental niche of the species
    • Hortal, J., Jiménez-Valverde, A., Gómez, J.F., Lobo, J.M. & Baselga, A. (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos, 117, 847-858.
    • (2008) Oikos , vol.117 , pp. 847-858
    • Hortal, J.1    Jiménez-Valverde, A.2    Gómez, J.F.3    Lobo, J.M.4    Baselga, A.5
  • 44
    • 79955976227 scopus 로고    scopus 로고
    • Defining optimal sampling effort for large-scale monitoring of invasive alien plants: a Bayesian method for estimating abundance and distribution
    • Hui, C., Foxcroft, L.C., Richardson, D.M. & MacFadyen, S. (2011) Defining optimal sampling effort for large-scale monitoring of invasive alien plants: a Bayesian method for estimating abundance and distribution. Journal of Applied Ecology, 48, 768-776.
    • (2011) Journal of Applied Ecology , vol.48 , pp. 768-776
    • Hui, C.1    Foxcroft, L.C.2    Richardson, D.M.3    MacFadyen, S.4
  • 45
    • 84858080295 scopus 로고    scopus 로고
    • Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling
    • Jiménez-Valverde, A. (2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21, 498-507.
    • (2012) Global Ecology and Biogeography , vol.21 , pp. 498-507
    • Jiménez-Valverde, A.1
  • 46
    • 54049102026 scopus 로고    scopus 로고
    • Not as good as they seem: the importance of concepts in species distribution modelling
    • Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14, 885-890.
    • (2008) Diversity and Distributions , vol.14 , pp. 885-890
    • Jiménez-Valverde, A.1    Lobo, J.M.2    Hortal, J.3
  • 47
    • 12144266865 scopus 로고    scopus 로고
    • Use and interpretation of logistic regression in habitat-selection studies
    • Keating, K.A. & Cherry, S. (2004) Use and interpretation of logistic regression in habitat-selection studies. Journal of Wildlife Management, 68, 774-789.
    • (2004) Journal of Wildlife Management , vol.68 , pp. 774-789
    • Keating, K.A.1    Cherry, S.2
  • 49
    • 84879315301 scopus 로고    scopus 로고
    • How to assess the prediction accuracy of species presence-absence models without absence data?
    • Li, W. & Guo, Q. (2013) How to assess the prediction accuracy of species presence-absence models without absence data? Ecography, 36, 788-799.
    • (2013) Ecography , vol.36 , pp. 788-799
    • Li, W.1    Guo, Q.2
  • 50
    • 38949161848 scopus 로고    scopus 로고
    • AUC: a misleading measure of the performance of predictive distribution models
    • Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151.
    • (2008) Global Ecology and Biogeography , vol.17 , pp. 145-151
    • Lobo, J.M.1    Jiménez-Valverde, A.2    Real, R.3
  • 51
    • 77953929268 scopus 로고    scopus 로고
    • The uncertain nature of absences and their importance in species distribution modelling
    • Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103-114.
    • (2010) Ecography , vol.33 , pp. 103-114
    • Lobo, J.M.1    Jiménez-Valverde, A.2    Hortal, J.3
  • 53
    • 84867663184 scopus 로고    scopus 로고
    • Fine-scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice
    • McInerny, G.J. & Purves, D.W. (2011) Fine-scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. Methods in Ecology and Evolution, 2, 248-257.
    • (2011) Methods in Ecology and Evolution , vol.2 , pp. 248-257
    • McInerny, G.J.1    Purves, D.W.2
  • 54
    • 84894279395 scopus 로고    scopus 로고
    • Virtual species distribution models: using simulated data to evaluate aspects of model performance
    • Miller, J.A. (2014) Virtual species distribution models: using simulated data to evaluate aspects of model performance. Progress in Physical Geography, 38, 117-128.
    • (2014) Progress in Physical Geography , vol.38 , pp. 117-128
    • Miller, J.A.1
  • 55
    • 84892896404 scopus 로고    scopus 로고
    • NatureServe conservation status
    • Available at:(accessed 8 November 2013).
    • NatureServe (2013) NatureServe conservation status. Available at: http://www.natureserve.org/explorer/ranking.htm (accessed 8 November 2013).
    • (2013)
  • 56
    • 84872862994 scopus 로고    scopus 로고
    • Assessing the primary data hosted by the Spanish Node of the Global Biodiversity Information Facility (GBIF)
    • Otegui, J., Ariño, A.H., Encinas, M.A. & Pando, F. (2013) Assessing the primary data hosted by the Spanish Node of the Global Biodiversity Information Facility (GBIF). PLoS One, 8, e55144.
    • (2013) PLoS One , vol.8 , pp. e55144
    • Otegui, J.1    Ariño, A.H.2    Encinas, M.A.3    Pando, F.4
  • 57
    • 0033831709 scopus 로고    scopus 로고
    • Evaluating the predictive performance of habitat models developed using logistic regression
    • Pearce, J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225-245.
    • (2000) Ecological Modelling , vol.133 , pp. 225-245
    • Pearce, J.1    Ferrier, S.2
  • 58
    • 77954088905 scopus 로고    scopus 로고
    • Species' distribution modeling for conservation educators and practitioners. Synthesis
    • Available at:(accessed 17 September 2014).
    • Pearson, R.G. (2007) Species' distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. Available at: http://ncep.amnh.org/resources.php?globalnav=resources§ionnav=modules§ionsubnav=module_files&module_id=361 (accessed 17 September 2014).
    • (2007) American Museum of Natural History
    • Pearson, R.G.1
  • 59
    • 33845604583 scopus 로고    scopus 로고
    • Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar
    • Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117.
    • (2007) Journal of Biogeography , vol.34 , pp. 102-117
    • Pearson, R.G.1    Raxworthy, C.J.2    Nakamura, M.3    Peterson, A.T.4
  • 60
    • 84926375853 scopus 로고    scopus 로고
    • Peatlands and oil sands
    • Available at:(accessed 19 November 2014).
    • PERG (2009) Peatlands and oil sands. Available at: http://www.gret-perg.ulaval.ca/no_cache/research/research-scope/peatlands-and-oil-sands/?tx_centrerecherche_pi1%5BshowUid%5D=770 (accessed 19 November 2014).
    • (2009)
  • 63
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
    • (2006) Ecological Modelling , vol.190 , pp. 231-259
    • Phillips, S.J.1    Anderson, R.P.2    Schapire, R.E.3
  • 64
  • 65
    • 0034973664 scopus 로고    scopus 로고
    • Evaluation of museum collection data for use in biodiversity assessment
    • Ponder, W.F., Carter, G.A., Flemons, P. & Chapman, R.R. (2001) Evaluation of museum collection data for use in biodiversity assessment. Conservation Biology, 15, 648-657.
    • (2001) Conservation Biology , vol.15 , pp. 648-657
    • Ponder, W.F.1    Carter, G.A.2    Flemons, P.3    Chapman, R.R.4
  • 66
    • 84884703802 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing
    • Vienna, Austria. Available at:(accessed 14 December 2012).
    • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/ (accessed 14 December 2012).
    • (2012) R: A language and environment for statistical computing
  • 67
    • 0242573339 scopus 로고    scopus 로고
    • Geographical sampling bias and its implications for conservation priorities in Africa
    • Reddy, S. & Dávalos, L.M. (2003) Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography, 30, 1719-1727.
    • (2003) Journal of Biogeography , vol.30 , pp. 1719-1727
    • Reddy, S.1    Dávalos, L.M.2
  • 69
    • 40349108569 scopus 로고    scopus 로고
    • Hierarchical spatial models of abundance and occurrence from imperfect survey data
    • Royle, J.A., Kéry, M., Gautier, R. & Schmid, H. (2007) Hierarchical spatial models of abundance and occurrence from imperfect survey data. Ecological Monographs, 77, 465-481.
    • (2007) Ecological Monographs , vol.77 , pp. 465-481
    • Royle, J.A.1    Kéry, M.2    Gautier, R.3    Schmid, H.4
  • 70
    • 34447645318 scopus 로고    scopus 로고
    • Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation
    • Schulman, L., Toivonen, T. & Ruokolainen, K. (2007) Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation. Journal of Biogeography, 34, 1388-1399.
    • (2007) Journal of Biogeography , vol.34 , pp. 1388-1399
    • Schulman, L.1    Toivonen, T.2    Ruokolainen, K.3
  • 72
    • 84926326512 scopus 로고    scopus 로고
    • Stata 12 help for pweight. Available at:(accessed 14 December 2012).
    • StataCorp (2012) Stata 12 help for pweight. Available at: http://www.stata.com/help.cgi?pweight (accessed 14 December 2012).
    • (2012)
  • 73
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1
  • 74
    • 84874016128 scopus 로고    scopus 로고
    • The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models
    • Syfert, M.M., Smith, M.J. & Coomes, D.A. (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One, 8, e55158.
    • (2013) PLoS One , vol.8 , pp. e55158
    • Syfert, M.M.1    Smith, M.J.2    Coomes, D.A.3
  • 76
    • 84926342521 scopus 로고    scopus 로고
    • R learning module: probabilities and distributions
    • Available at:(accessed 29 October 2012).
    • UCLA Statistical Consulting Group (2012) R learning module: probabilities and distributions. Available at: http://www.ats.ucla.edu/stat/r/modules/prob_dist.htm (accessed 29 October 2012).
    • (2012)
  • 78
    • 0037202451 scopus 로고    scopus 로고
    • Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns
    • Zaniewski, A.E., Lehman, A. & Overton, J.McC (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling, 157, 261-280.
    • (2002) Ecological Modelling , vol.157 , pp. 261-280
    • Zaniewski, A.E.1    Lehman, A.2    Overton, JM.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.