메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1752-1757

Sometimes average is best: The importance of averaging for prediction using MCMC inference in topic modeling

Author keywords

[No Author keywords available]

Indexed keywords

MARKOV PROCESSES;

EID: 84926039999     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/d14-1182     Document Type: Conference Paper
Times cited : (17)

References (29)
  • 1
    • 0037262814 scopus 로고    scopus 로고
    • An introduction to MCMC for machine learning
    • Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. 2003. An introduction to MCMC for machine learning. Machine Learning, 50(1-2):5-43.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 5-43
    • Andrieu, C.1    Freitas, N.D.2    Doucet, A.3    Jordan, M.I.4
  • 2
    • 77954725706 scopus 로고    scopus 로고
    • On smoothing and inference for topic models
    • Arthur Asuncion, Max Welling, Padhraic Smyth, and Yee Whye Teh. 2009. On smoothing and inference for topic models. In UAI.
    • (2009) UAI
    • Asuncion, A.1    Welling, M.2    Smyth, P.3    Teh, Y.W.4
  • 3
    • 74549185029 scopus 로고    scopus 로고
    • Supervised topic models
    • David M. Blei and Jon D. McAuliffe. 2007. Supervised topic models. In NIPS.
    • (2007) NIPS
    • Blei, D.M.1    McAuliffe, J.D.2
  • 4
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • David M. Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet allocation. JMLR, 3.
    • (2003) JMLR , pp. 3
    • Blei, D.M.1    Ng, A.2    Jordan, M.3
  • 5
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • April
    • David M. Blei. 2012. Probabilistic topic models. Commun. ACM, 55(4):77-84, April.
    • (2012) Commun. ACM , vol.55 , Issue.4 , pp. 77-84
    • Blei, D.M.1
  • 6
    • 84906879757 scopus 로고    scopus 로고
    • Build, compute, critique, repeat: Data analysis with latent variable models
    • David M. Blei. 2014. Build, compute, critique, repeat: Data analysis with latent variable models. Annual Review of Statistics and Its Application, 1(1):203-232.
    • (2014) Annual Review of Statistics and its Application , vol.1 , Issue.1 , pp. 203-232
    • Blei, D.M.1
  • 7
    • 80053255550 scopus 로고    scopus 로고
    • Holistic sentiment analysis across languages: Multilingual supervised latent dirichlet allocation
    • Jordan Boyd-Graber and Philip Resnik. 2010. Holistic sentiment analysis across languages: Multilingual supervised latent Dirichlet allocation. In EMNLP.
    • (2010) EMNLP
    • Boyd-Graber, J.1    Resnik, P.2
  • 9
    • 84877739470 scopus 로고    scopus 로고
    • Monte carlo methods for maximum margin supervised topic models
    • Qixia Jiang, Jun Zhu, Maosong Sun, and Eric P. Xing. 2012. Monte Carlo methods for maximum margin supervised topic models. In NIPS.
    • (2012) NIPS
    • Jiang, Q.1    Zhu, J.2    Sun, M.3    Xing, E.P.4
  • 10
    • 79952432020 scopus 로고    scopus 로고
    • Aspect and sentiment unification model for online review analysis
    • Yohan Jo and Alice H. Oh. 2011. Aspect and sentiment unification model for online review analysis. In WSDM.
    • (2011) WSDM
    • Jo, Y.1    Oh, A.H.2
  • 12
    • 70049090214 scopus 로고    scopus 로고
    • DiscLDA: Discriminative learning for dimensionality reduction and classification
    • Simon Lacoste-Julien, Fei Sha, and Michael I. Jordan. 2008. DiscLDA: Discriminative learning for dimensionality reduction and classification. In NIPS.
    • (2008) NIPS
    • Lacoste-Julien, S.1    Sha, F.2    Jordan, M.I.3
  • 13
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. Liu and J. Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Math. Prog.
    • (1989) Math. Prog.
    • Liu, D.1    Nocedal, J.2
  • 14
    • 0004087397 scopus 로고
    • Probabilistic inference using markov chain Monte Carlo methods
    • Radford M. Neal. 1993. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR- 93-1, University of Toronto.
    • (1993) Technical Report, University of Toronto
    • Neal, R.M.1
  • 15
    • 84878200241 scopus 로고    scopus 로고
    • SITS: A hierarchical nonparametric model using speaker identity for topic segmentation in multiparty conversations
    • Viet-An Nguyen, Jordan Boyd-Graber, and Philip Resnik. 2012. SITS: A hierarchical nonparametric model using speaker identity for topic segmentation in multiparty conversations. In ACL.
    • (2012) ACL
    • Nguyen, V.-A.1    Boyd-Graber, J.2    Resnik, P.3
  • 17
    • 84859895244 scopus 로고    scopus 로고
    • Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
    • Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL.
    • (2005) ACL
    • Pang, B.1    Lee, L.2
  • 18
    • 80053392186 scopus 로고    scopus 로고
    • Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
    • Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher Manning. 2009. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In EMNLP.
    • (2009) EMNLP
    • Ramage, D.1    Hall, D.2    Nallapati, R.3    Manning, C.4
  • 19
    • 80052690222 scopus 로고    scopus 로고
    • Partially labeled topic models for interpretable text mining
    • Daniel Ramage, Christopher D. Manning, and Susan Dumais. 2011. Partially labeled topic models for interpretable text mining. In KDD, pages 457-465.
    • (2011) KDD , pp. 457-465
    • Ramage, D.1    Manning, C.D.2    Dumais, S.3
  • 20
    • 79951730311 scopus 로고    scopus 로고
    • Gibbs sampling for the uninitiated
    • Philip Resnik and Eric Hardisty. 2010. Gibbs sampling for the uninitiated. Technical Report UMIACS-TR-2010-04, University of Maryland. http://drum.lib.umd.edu//handle/1903/10058.
    • (2010) Technical Report UMIACS-TR-2010-04
    • Resnik, P.1    Hardisty, E.2
  • 21
  • 22
    • 84883422718 scopus 로고    scopus 로고
    • Monte carlo MCMC: Efficient inference by approximate sampling
    • Sameer Singh, Michael Wick, and Andrew McCallum. 2012. Monte Carlo MCMC: Efficient inference by approximate sampling. In EMNLP, pages 1104-1113.
    • (2012) EMNLP , pp. 1104-1113
    • Singh, S.1    Wick, M.2    McCallum, A.3
  • 23
    • 33745909504 scopus 로고    scopus 로고
    • Probabilistic topic models
    • T. Landauer, D. Mcnamara, S. Dennis, and W. Kintsch, editors, Laurence Erlbaum
    • Mark Steyvers and Tom Griffiths. 2006. Probabilistic topic models. In T. Landauer, D. Mcnamara, S. Dennis, and W. Kintsch, editors, Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum.
    • (2006) Latent Semantic Analysis: A Road to Meaning
    • Steyvers, M.1    Griffiths, T.2
  • 24
    • 71149089356 scopus 로고    scopus 로고
    • Evaluation methods for topic models
    • Leon Bottou and Michael Littman, editors
    • Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. 2009. Evaluation methods for topic models. In Leon Bottou and Michael Littman, editors, ICML.
    • (2009) ICML
    • Wallach, H.M.1    Murray, I.2    Salakhutdinov, R.3    Mimno, D.4
  • 26
    • 70450178502 scopus 로고    scopus 로고
    • Simultaneous image classification and annotation
    • Chong Wang, David Blei, and Li Fei-Fei. 2009. Simultaneous image classification and annotation. In CVPR.
    • (2009) CVPR
    • Wang, C.1    Blei, D.2    Fei-Fei, L.3
  • 27
    • 77956195200 scopus 로고    scopus 로고
    • Latent aspect rating analysis on review text data: A rating regression approach
    • Hongning Wang, Yue Lu, and Chengxiang Zhai. 2010. Latent aspect rating analysis on review text data: A rating regression approach. In SIGKDD, pages 783-792.
    • (2010) SIGKDD , pp. 783-792
    • Wang, H.1    Lu, Y.2    Zhai, C.3
  • 28
    • 71149117321 scopus 로고    scopus 로고
    • MedLDA: Maximum margin supervised topic models for regression and classification
    • Jun Zhu, Amr Ahmed, and Eric P. Xing. 2009. MedLDA: maximum margin supervised topic models for regression and classification. In ICML.
    • (2009) ICML
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.