-
1
-
-
65249120822
-
-
Chuang, C.; Fan, Y.-C.; Jin, B.-Y. J. Chem. Inf. Model. 2009, 49, 361-368
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 361-368
-
-
Chuang, C.1
Fan, Y.-C.2
Jin, B.-Y.3
-
2
-
-
73349125789
-
-
Bharat; Bhola, R.; Bally, T.; Valente, A.; Cyrański, M. K.; Dobrzycki, Ł.; Spain, S. M.; Rempała, P.; Chin, M. R.; King, B. T. Angew. Chem., Int. Ed. 2010, 49, 399-402
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 399-402
-
-
Bharat1
Bhola, R.2
Bally, T.3
Valente, A.4
Cyrański, M.K.5
Dobrzycki Ł.6
Spain, S.M.7
Rempała, P.8
Chin, M.R.9
King, B.T.10
-
4
-
-
0000069029
-
-
Lenosky, T.; Gonze, X.; Teter, M.; Elser, V. Nature 1992, 355, 333-335
-
(1992)
Nature
, vol.355
, pp. 333-335
-
-
Lenosky, T.1
Gonze, X.2
Teter, M.3
Elser, V.4
-
5
-
-
0004232785
-
-
Iijima, S.; Ichibashi, T.; Ando, Y. Nature 1992, 356, 776-778
-
(1992)
Nature
, vol.356
, pp. 776-778
-
-
Iijima, S.1
Ichibashi, T.2
Ando, Y.3
-
6
-
-
0347947115
-
-
Park, N.; Yoon, M.; Berber, S.; Ihm, J.; Osawa, E.; Tománek, D. Phys. Rev. Lett. 2003, 91, 237204-1/4
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 237204-1/4
-
-
Park, N.1
Yoon, M.2
Berber, S.3
Ihm, J.4
Osawa, E.5
Tománek, D.6
-
7
-
-
79952851072
-
-
Beuerle, F.; Herrmann, C.; Whalley, A. C.; Valente, C.; Gamburd, A.; Ratner, M.; Stoddart, J. F. Chem.-Eur. J. 2011, 17, 3868-3875
-
(2011)
Chem.-Eur. J.
, vol.17
, pp. 3868-3875
-
-
Beuerle, F.1
Herrmann, C.2
Whalley, A.C.3
Valente, C.4
Gamburd, A.5
Ratner, M.6
Stoddart, J.F.7
-
9
-
-
84880347223
-
-
Feng, C.-H.; Kuo, M.-Y.; Wu, Y.-T. Angew. Chem., Int. Ed. 2013, 52, 7791-7794
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 7791-7794
-
-
Feng, C.-H.1
Kuo, M.-Y.2
Wu, Y.-T.3
-
10
-
-
84875183891
-
-
Pradhan, A.; Dechambenoit, P.; Bock, H.; Durola, F. J. Org. Chem. 2013, 78, 2266-2274
-
(2013)
J. Org. Chem.
, vol.78
, pp. 2266-2274
-
-
Pradhan, A.1
Dechambenoit, P.2
Bock, H.3
Durola, F.4
-
11
-
-
84865426531
-
-
Luo, J.; Xu, X.; Mao, R.; Miao, Q. J. Am. Chem. Soc. 2012, 134, 13796-13803
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 13796-13803
-
-
Luo, J.1
Xu, X.2
Mao, R.3
Miao, Q.4
-
12
-
-
84883137750
-
-
Kawasumi, K.; Zhang, Q.; Segawa, Y.; Scott, L. T.; Itami, K. Nat. Chem. 2013, 5, 739-744
-
(2013)
Nat. Chem.
, vol.5
, pp. 739-744
-
-
Kawasumi, K.1
Zhang, Q.2
Segawa, Y.3
Scott, L.T.4
Itami, K.5
-
13
-
-
33947712905
-
-
Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718-747
-
(2007)
Chem. Rev.
, vol.107
, pp. 718-747
-
-
Wu, J.1
Pisula, W.2
Müllen, K.3
-
15
-
-
84981826311
-
-
Ried, W.; Ehret, J. Angew. Chem., Int. Ed. 1968, 7, 377-378
-
(1968)
Angew. Chem., Int. Ed.
, vol.7
, pp. 377-378
-
-
Ried, W.1
Ehret, J.2
-
16
-
-
84941058870
-
-
Leung, N. L. C.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W. Y.; Tang, B. Z. Chem.-Eur. J. 2014, 20, 15349-15353
-
(2014)
Chem.-Eur. J.
, vol.20
, pp. 15349-15353
-
-
Leung, N.L.C.1
Xie, N.2
Yuan, W.3
Liu, Y.4
Wu, Q.5
Peng, Q.6
Miao, Q.7
Lam, J.W.Y.8
Tang, B.Z.9
-
17
-
-
79958859853
-
-
The commonly used formal potential of the redox couple of ferrocenium/ferrocene (Fc+/Fc) in the Fermi scale is -5.1 eV, which is calculated on the basis of an approximation neglecting solvent effects using a work function of 4.46 eV for the normal hydrogen electrode (NHE) and an electrochemical potential of 0.64 V for (Fc+/Fc) versus NHE. See
-
The commonly used formal potential of the redox couple of ferrocenium/ferrocene (Fc+/Fc) in the Fermi scale is -5.1 eV, which is calculated on the basis of an approximation neglecting solvent effects using a work function of 4.46 eV for the normal hydrogen electrode (NHE) and an electrochemical potential of 0.64 V for (Fc+/Fc) versus NHE. See: Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Adv. Mater. 2011, 23, 2367-2371
-
(2011)
Adv. Mater.
, vol.23
, pp. 2367-2371
-
-
Cardona, C.M.1
Li, W.2
Kaifer, A.E.3
Stockdale, D.4
Bazan, G.C.5
-
18
-
-
23044443893
-
-
University Science Books: Sausalito, CA, Chapter 1
-
Anslyn, E. V.; Dougherty, D. A.; Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, 2004; Chapter 1, p 22.
-
(2004)
Modern Physical Organic Chemistry
, pp. 22
-
-
Anslyn, E.V.1
Dougherty, D.A.2
-
22
-
-
84896392831
-
-
The average distance of the carbon atoms in a ring from a generated best-fit plane was used to evaluate the nonplanarity of a ring in polycyclic arenes, but was named as planarity. See
-
The average distance of the carbon atoms in a ring from a generated best-fit plane was used to evaluate the nonplanarity of a ring in polycyclic arenes, but was named as planarity. See: Miller, R. W.; Duncan, A. K.; Schneebeli, S. T.; Gray, D. L.; Whalley, A. C. Chem.-Eur. J. 2014, 20, 3705-3711
-
(2014)
Chem.-Eur. J.
, vol.20
, pp. 3705-3711
-
-
Miller, R.W.1
Duncan, A.K.2
Schneebeli, S.T.3
Gray, D.L.4
Whalley, A.C.5
-
24
-
-
67649995543
-
-
Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, A.; Bao, Z. J. Am. Chem. Soc. 2009, 131, 9396-9404
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 9396-9404
-
-
Ito, Y.1
Virkar, A.A.2
Mannsfeld, S.3
Oh, J.H.4
Toney, M.5
Locklin, A.6
Bao, Z.7
|