메뉴 건너뛰기




Volumn 29, Issue 2, 2015, Pages 258-279

Geo-located community detection in Twitter with enhanced fast-greedy optimization of modularity: the case study of typhoon Haiyan

Author keywords

fast greedy optimization of modularity; geo located communities; social media; spatial clustering; Twitter

Indexed keywords

ALGORITHM; CLUSTER ANALYSIS; INTERNET; MASS MEDIA; MEDIA ROLE; NATURAL DISASTER; SOCIAL NETWORK; SPATIAL ANALYSIS; TYPHOON HAIYAN 2013;

EID: 84925641326     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2014.964247     Document Type: Article
Times cited : (73)

References (80)
  • 1
    • 33645156787 scopus 로고    scopus 로고
    • Synchronization reveals topological scales in complex networks
    • Arenas, A., Díaz-Guilera, A., and Pérez-Vicente, C.J., 2006. Synchronization reveals topological scales in complex networks. Physical Review Letters, 96 (11), 114102. doi:10.1103/PhysRevLett.96.114102
    • (2006) Physical Review Letters , vol.96 , Issue.11 , pp. 114102
    • Arenas, A.1    Díaz-Guilera, A.2    Pérez-Vicente, C.J.3
  • 2
    • 34547333419 scopus 로고    scopus 로고
    • Size reduction of complex networks preserving modularity
    • Arenas, A., et al., 2007. Size reduction of complex networks preserving modularity. New Journal of Physics, 9 (6), 176. doi:10.1088/1367-2630/9/6/176
    • (2007) New Journal of Physics , vol.9 , Issue.6 , pp. 176
    • Arenas, A.1
  • 4
    • 84904022957 scopus 로고    scopus 로고
    • Mapping between dynamic ontologies in support of geospatial data integration for disaster management
    • Li J., Zlatanova S., Fabbri A.G., (eds), Berlin: Springer
    • Bakillah, M., et al., 2007. Mapping between dynamic ontologies in support of geospatial data integration for disaster management. In: J. Li, S. Zlatanova, and A.G. Fabbri, eds. Geomatics solutions for disaster management. Berlin: Springer, 201–224.
    • (2007) Geomatics solutions for disaster management , pp. 201-224
    • Bakillah, M.1
  • 5
    • 84886364914 scopus 로고    scopus 로고
    • A dynamic and context-aware semantic mediation service for discovering and fusion of heterogeneous sensor data
    • Bakillah, M., et al., 2014. A dynamic and context-aware semantic mediation service for discovering and fusion of heterogeneous sensor data. Journal of Spatial Information Science, 6, 155–185.
    • (2014) Journal of Spatial Information Science , vol.6 , pp. 155-185
    • Bakillah, M.1
  • 6
    • 79957792742 scopus 로고    scopus 로고
    • Fast algorithms for determining (generalized) core groups in social networks
    • Batagelj, V. and Zaveršnik, M., 2011. Fast algorithms for determining (generalized) core groups in social networks. Advances in Data Analysis and Classification, 5 (2), 129–145. doi:10.1007/s11634-010-0079-y
    • (2011) Advances in Data Analysis and Classification , vol.5 , Issue.2 , pp. 129-145
    • Batagelj, V.1    Zaveršnik, M.2
  • 11
    • 84925616212 scopus 로고    scopus 로고
    • June
    • British Broadcasting Corporation (BBC), 2013c. Typhoon Haiyan death toll rises over 5,000 [online]. Available from: http://www.bbc.com/news/world-asia-25051606 [Accessed 6June 2014].
    • (2013) Typhoon Haiyan death toll rises over 5,000[online]
  • 12
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • Ghosh J., (ed), Bethesda, MD: April
    • Cao, F., et al., 2006. Density-based clustering over an evolving data stream with noise. In: J. Ghosh, et al., eds. Proceedings of the 6th SIAM international conference on data mining, 20–22April Bethesda, MD. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 328–339.
    • (2006) Proceedings of the 6th SIAM international conference on data mining , pp. 328-339
    • Cao, F.1
  • 13
    • 84893420117 scopus 로고    scopus 로고
    • Spatial hierarchical clustering
    • Carvalho, A.X.Y., et al., 2009. Spatial hierarchical clustering. Revista Brasileira de Biometria, 27 (3), 411–442.
    • (2009) Revista Brasileira de Biometria , vol.27 , Issue.3 , pp. 411-442
    • Carvalho, A.X.Y.1
  • 14
    • 53349102071 scopus 로고    scopus 로고
    • A stack-based prospective spatio-temporal data analysis approach
    • Chang, W., Zeng, D., and Chen, H., 2008. A stack-based prospective spatio-temporal data analysis approach. Decision Support Systems, 45, 697–713. doi:10.1016/j.dss.2007.12.008
    • (2008) Decision Support Systems , vol.45 , pp. 697-713
    • Chang, W.1    Zeng, D.2    Chen, H.3
  • 16
    • 70349826463 scopus 로고    scopus 로고
    • Local community identification in social networks
    • International conference on advances in social networks analysis and mining (ASONAM), Athens: IEEE, July
    • Chen, J., Zaiane, O.R., and Goebel, R., 2009. Local community identification in social networks. In: International conference on advances in social networks analysis and mining (ASONAM), 20–22July 2009. Athens: IEEE, 237–242.
    • (2009) , pp. 237-242
    • Chen, J.1    Zaiane, O.R.2    Goebel, R.3
  • 18
    • 33750439144 scopus 로고    scopus 로고
    • Understanding knowledge sharing in virtual communities: an integration of social capital and social cognitive theories
    • Chiu, C., Hsu, M., and Wang, E., 2006. Understanding knowledge sharing in virtual communities: an integration of social capital and social cognitive theories. Decision Support Systems, 42, 1872–1888. doi:10.1016/j.dss.2006.04.001
    • (2006) Decision Support Systems , vol.42 , pp. 1872-1888
    • Chiu, C.1    Hsu, M.2    Wang, E.3
  • 19
    • 41349117788 scopus 로고    scopus 로고
    • Finding community structure in very large networks
    • Clauset, A., Newman, M.E.J., and Moore, C., 2004. Finding community structure in very large networks. Physical Review E, 70, 6. doi:10.1103/PhysRevE.70.066111
    • (2004) Physical Review E , vol.70 , pp. 6
    • Clauset, A.1    Newman, M.E.J.2    Moore, C.3
  • 20
    • 22444447333 scopus 로고    scopus 로고
    • A genetic approach to detecting clusters in point data sets
    • Conley, J., Gahegan, M., and Macgill, J., 2005. A genetic approach to detecting clusters in point data sets. Geographical Analysis, 37 (3), 286–314. doi:10.1111/j.1538-4632.2005.00617.x
    • (2005) Geographical Analysis , vol.37 , Issue.3 , pp. 286-314
    • Conley, J.1    Gahegan, M.2    Macgill, J.3
  • 21
    • 84873282297 scopus 로고    scopus 로고
    • #Earthquake: twitter as a distributed sensor system
    • Crooks, A., et al., 2013. #Earthquake: twitter as a distributed sensor system. Transactions in GIS, 17 (1), 124–147. doi:10.1111/j.1467-9671.2012.01359.x
    • (2013) Transactions in GIS , vol.17 , Issue.1 , pp. 124-147
    • Crooks, A.1
  • 22
    • 79956040653 scopus 로고    scopus 로고
    • Towards detecting influenza epidemics by analyzing Twitter messages
    • KDD workshop on social media analytics, New York: ACM
    • Culotta, A., 2010. Towards detecting influenza epidemics by analyzing Twitter messages. In: KDD workshop on social media analytics. New York: ACM, 115–122.
    • (2010) , pp. 115-122
    • Culotta, A.1
  • 23
    • 84884973855 scopus 로고    scopus 로고
    • Mixing local and global information for community detection in large networks
    • De Meo, P., et al., 2014. Mixing local and global information for community detection in large networks. Journal of Computer and System Sciences, 80 (1), 72–87. doi:10.1016/j.jcss.2013.03.012
    • (2014) Journal of Computer and System Sciences , vol.80 , Issue.1 , pp. 72-87
    • De Meo, P.1
  • 24
    • 0015661138 scopus 로고
    • Lower bounds for the partitioning of graphs
    • Donath, W. and Hoffman, A., 1973. Lower bounds for the partitioning of graphs. IBM Journal of Research and Development, 17 (5), 420–425. doi:10.1147/rd.175.0420
    • (1973) IBM Journal of Research and Development , vol.17 , Issue.5 , pp. 420-425
    • Donath, W.1    Hoffman, A.2
  • 25
    • 27244441304 scopus 로고    scopus 로고
    • Community detection in complex networks using extremal optimization
    • Duch, J. and Arenas, A., 2005. Community detection in complex networks using extremal optimization. Physical Review E, 72, 27104. doi:10.1103/PhysRevE.72.027104
    • (2005) Physical Review E , vol.72 , pp. 27104
    • Duch, J.1    Arenas, A.2
  • 26
    • 79956348147 scopus 로고    scopus 로고
    • Uncovering space-independent communities in spatial networks
    • Expert, P., et al., 2011. Uncovering space-independent communities in spatial networks. Proceedings of the National Academy of Sciences, 108 (19), 7663–7668. doi:10.1073/pnas.1018962108
    • (2011) Proceedings of the National Academy of Sciences , vol.108 , Issue.19 , pp. 7663-7668
    • Expert, P.1
  • 27
    • 49349113304 scopus 로고    scopus 로고
    • Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms
    • Fernandez, A. and Gomez, S., 2008. Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms. Journal of Classification, 25, 43–65. doi:10.1007/s00357-008-9004-x
    • (2008) Journal of Classification , vol.25 , pp. 43-65
    • Fernandez, A.1    Gomez, S.2
  • 28
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • Fortunato, S., 2010. Community detection in graphs. Physics Reports, 486, 75–174. doi:10.1016/j.physrep.2009.11.002
    • (2010) Physics Reports , vol.486 , pp. 75-174
    • Fortunato, S.1
  • 29
    • 41349119161 scopus 로고    scopus 로고
    • Method to find community structures based on information centrality
    • Fortunato, S., Latora, V., and Marchiori, M., 2004. Method to find community structures based on information centrality. Physical Review E, 70, 56104. doi:10.1103/PhysRevE.70.056104
    • (2004) Physical Review E , vol.70 , pp. 56104
    • Fortunato, S.1    Latora, V.2    Marchiori, M.3
  • 30
    • 84865730611 scopus 로고
    • A set of measures of centrality based on betweenness
    • Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Sociometry, 40, 35–41. doi:10.2307/3033543
    • (1977) Sociometry , vol.40 , pp. 35-41
    • Freeman, L.C.1
  • 31
    • 0037062448 scopus 로고    scopus 로고
    • Community structure in social and biological networks
    • Girvan, M. and Newman, M.E.J., 2002. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99 (12), 7821–7826. doi:10.1073/pnas.122653799
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , Issue.12 , pp. 7821-7826
    • Girvan, M.1    Newman, M.E.J.2
  • 32
    • 0014602106 scopus 로고
    • Lack of time-space clustering of childhood leukemia in Los Angeles County, 1960–1964
    • Glass, A.G. and Mantel, N., 1969. Lack of time-space clustering of childhood leukemia in Los Angeles County, 1960–1964. Cancer Research, 29 (11), 1995–2001.
    • (1969) Cancer Research , vol.29 , Issue.11 , pp. 1995-2001
    • Glass, A.G.1    Mantel, N.2
  • 33
    • 77949503158 scopus 로고    scopus 로고
    • The information and social needs of Cumbrian farmers during the UK 2001 foot and mouth disease outbreak and the role of information and communication technologies
    • Döring M., Nerlich B., (eds), Manchester University Press
    • Hagar, C., 2009. The information and social needs of Cumbrian farmers during the UK 2001 foot and mouth disease outbreak and the role of information and communication technologies. In: M. Döring and B. Nerlich, eds. The socio-cultural impact of foot and mouth disease in the UK in 2001: experiences and analyses. Manchester University Press.
    • (2009) The socio-cultural impact of foot and mouth disease in the UK in 2001: experiences and analyses
    • Hagar, C.1
  • 34
    • 33748773043 scopus 로고    scopus 로고
    • Community detection as an inference problem
    • Hastings, M.B., 2006. Community detection as an inference problem. Physical Review E, 74, 035102. doi:10.1103/PhysRevE.74.035102
    • (2006) Physical Review E , vol.74 , pp. 035102
    • Hastings, M.B.1
  • 35
    • 4243128193 scopus 로고    scopus 로고
    • On clusterings: good, bad and spectral
    • Kannan, R., Vempala, S., and Vetta, A., 2004. On clusterings: good, bad and spectral. Journal of the Acm, 51 (3), 497–515. doi:10.1145/990308.990313
    • (2004) Journal of the Acm , vol.51 , Issue.3 , pp. 497-515
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 37
    • 76749155516 scopus 로고    scopus 로고
    • Application and integration of lattice data analysis, network K-functions, and geographic information system software to study ice-related crashes
    • Khan, G., et al., 2009. Application and integration of lattice data analysis, network K-functions, and geographic information system software to study ice-related crashes. Transportation Research Record: Journal of the Transportation Research Board, 2136, 67–76. doi:10.3141/2136-08
    • (2009) Transportation Research Record: Journal of the Transportation Research Board , vol.2136 , pp. 67-76
    • Khan, G.1
  • 39
    • 34047211509 scopus 로고    scopus 로고
    • A coarse-to-fine strategy for vehicle motion trajectory clustering
    • International conference on pattern recognition (ICPR), Hong Kong: IEEE, August
    • Li, X., Hu, W., and Hu, W., 2006. A coarse-to-fine strategy for vehicle motion trajectory clustering. In: International conference on pattern recognition (ICPR), August 2006. Hong Kong: IEEE, 591–594.
    • (2006) , pp. 591-594
    • Li, X.1    Hu, W.2    Hu, W.3
  • 40
    • 70350765396 scopus 로고    scopus 로고
    • Varied density based spatial clustering of application with noise
    • Proceedings of IEEE conference ICSSSM
    • Liu, P., Zhou, D., and Wu, N., 2007. Varied density based spatial clustering of application with noise. In: Proceedings of IEEE conference ICSSSM. New York: IEEE, 528–531.
    • (2007) , pp. 528-531
    • Liu, P.1    Zhou, D.2    Wu, N.3
  • 41
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Proceedings of KDD, Palo Alto, CA: AAAI
    • Martin, E., et al., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of KDD. Palo Alto, CA: AAAI, 226–231.
    • (1996) , pp. 226-231
    • Martin, E.1
  • 42
    • 74949088070 scopus 로고    scopus 로고
    • Multidimensional map algebra: design and implementation of a spatio-temporal GIS processing language
    • Mennis, J., 2010. Multidimensional map algebra: design and implementation of a spatio-temporal GIS processing language. Transactions in GIS, 14 (1), 1–21. doi:10.1111/j.1467-9671.2009.01179.x
    • (2010) Transactions in GIS , vol.14 , Issue.1 , pp. 1-21
    • Mennis, J.1
  • 43
    • 84889665516 scopus 로고    scopus 로고
    • Understanding the roles of communities in volunteered geographic information projects
    • Krisp J.M., (ed), Berlin: Springer
    • Mooney, P. and Corcoran, P., 2013. Understanding the roles of communities in volunteered geographic information projects. In: J.M. Krisp, ed. Progress in location-based services. Berlin: Springer, 357–371.
    • (2013) Progress in location-based services , pp. 357-371
    • Mooney, P.1    Corcoran, P.2
  • 44
    • 70350770739 scopus 로고    scopus 로고
    • Multi-scale spatiotemporal analyses of moose–vehicle collisions: a case study in northern Vermont
    • Mountrakis, G. and Gunson, K., 2009. Multi-scale spatiotemporal analyses of moose–vehicle collisions: a case study in northern Vermont. Ijgis, 23, 1389–1412.
    • (2009) Ijgis , vol.23 , pp. 1389-1412
    • Mountrakis, G.1    Gunson, K.2
  • 45
    • 84925667762 scopus 로고    scopus 로고
    • Detecting communities in social networks
    • Furht B., (ed), New York: Springer
    • Murata, T., 2010. Detecting communities in social networks. In: B. Furht, ed. Handbook of social network technologies and applications. New York: Springer, 269–280.
    • (2010) Handbook of social network technologies and applications , pp. 269-280
    • Murata, T.1
  • 46
    • 77955044486 scopus 로고    scopus 로고
    • Visualising crime clusters in a space-time cube: an exploratory data-analysis approach using space-time kernel density estimation and scan statistics
    • Nakaya, T. and Yano, K., 2010. Visualising crime clusters in a space-time cube: an exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Transactions in GIS, 14 (3), 223–239. doi:10.1111/j.1467-9671.2010.01194.x
    • (2010) Transactions in GIS , vol.14 , Issue.3 , pp. 223-239
    • Nakaya, T.1    Yano, K.2
  • 47
    • 5444246613 scopus 로고    scopus 로고
    • C2P: clustering based on closest pairs
    • Apers P.M.G., (ed), San Francisco, CA: Morgan Kaufmann
    • Nanopoulos, A., Theodoridis, Y., and Manolopoulos, Y., 2001. C2P: clustering based on closest pairs. In: P.M.G. Apers, et al., eds. Proceedings of VLDB. San Francisco, CA: Morgan Kaufmann, 331–340.
    • (2001) Proceedings of VLDB , pp. 331-340
    • Nanopoulos, A.1    Theodoridis, Y.2    Manolopoulos, Y.3
  • 49
    • 42749100809 scopus 로고    scopus 로고
    • Fast algorithm for detecting community structure in networks
    • Newman, M.E.J., 2004b. Fast algorithm for detecting community structure in networks. Physical Review E, 69, 66133. doi:10.1103/PhysRevE.69.066133
    • (2004) Physical Review E , vol.69 , pp. 66133
    • Newman, M.E.J.1
  • 50
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman, M.E.J. and Girvan, M., 2004. Finding and evaluating community structure in networks. Physical Review E, 69 (2), 26113. doi:10.1103/PhysRevE.69.026113
    • (2004) Physical Review E , vol.69 , Issue.2 , pp. 26113
    • Newman, M.E.J.1    Girvan, M.2
  • 51
    • 84950876142 scopus 로고
    • A mark 1 geographical analysis machine for the automated analysis of point data sets
    • Openshaw, S., et al., 1987. A mark 1 geographical analysis machine for the automated analysis of point data sets. Ijgis, 1 (4), 335–358.
    • (1987) Ijgis , vol.1 , Issue.4 , pp. 335-358
    • Openshaw, S.1
  • 52
    • 20444504323 scopus 로고    scopus 로고
    • Uncovering the overlapping community structure of complex networks in nature and society
    • Palla, G., et al., 2005. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435 (7043), 814–818. doi:10.1038/nature03607
    • (2005) Nature , vol.435 , Issue.7043 , pp. 814-818
    • Palla, G.1
  • 53
    • 79952158524 scopus 로고    scopus 로고
    • Cluster-based landmark and event detection for tagged photo collections
    • Papadopoulos, S., et al., 2011. Cluster-based landmark and event detection for tagged photo collections. IEEE Multimedia, 18 (1), 52–63. doi:10.1109/MMUL.2010.68
    • (2011) IEEE Multimedia , vol.18 , Issue.1 , pp. 52-63
    • Papadopoulos, S.1
  • 54
    • 84861734734 scopus 로고    scopus 로고
    • Community detection in social media performance and application considerations
    • Papadopoulos, S., et al., 2012. Community detection in social media performance and application considerations. Data Mining and Knowledge Discovery, 24, 515–554. doi:10.1007/s10618-011-0224-z
    • (2012) Data Mining and Knowledge Discovery , vol.24 , pp. 515-554
    • Papadopoulos, S.1
  • 56
    • 77951180257 scopus 로고    scopus 로고
    • Windowed nearest neighbor method for mining spatio-temporal clusters in the presence of noise
    • Pei, T., et al., 2010. Windowed nearest neighbor method for mining spatio-temporal clusters in the presence of noise. Ijgis, 24, 925–948.
    • (2010) Ijgis , vol.24 , pp. 925-948
    • Pei, T.1
  • 57
    • 57349117605 scopus 로고    scopus 로고
    • Learning to classify short and sparse text & web with hidden topics from large-scale data collections
    • Proceedings of 17th WWW, New York: ACM, April
    • Phan, X.-H., Nguyen, L.-M., and Horiguchi, S., 2008. Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In: Proceedings of 17th WWW, April 2008. New York: ACM, 91–100.
    • (2008) , pp. 91-100
    • Phan, X.-H.1    Nguyen, L.-M.2    Horiguchi, S.3
  • 59
    • 81855185014 scopus 로고    scopus 로고
    • Space-time dynamics of topics in streaming text
    • Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks, New York: ACM
    • Pozdnoukhov, A. and Kaiser, C., 2011. Space-time dynamics of topics in streaming text. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks. New York: ACM, 1–8.
    • (2011) , pp. 1-8
    • Pozdnoukhov, A.1    Kaiser, C.2
  • 60
    • 34548856552 scopus 로고    scopus 로고
    • Near linear time algorithm to detect community structures in large-scale networks
    • Raghavan, U.N., Albert, R., and Kumara, S., 2007. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76, 036106.
    • (2007) Physical Review E , vol.76 , pp. 036106
    • Raghavan, U.N.1    Albert, R.2    Kumara, S.3
  • 61
    • 84925663959 scopus 로고    scopus 로고
    • An efficient method for subjectively choosing parameter k automatically in VDBSCAN
    • Mahadevan V., Jianhong Z., (eds), February, Singapore. Singapore: IEEE
    • Rasheduzzaman Chowdhury, A.K.M. and Asikur Rahman, M.D., 2010. An efficient method for subjectively choosing parameter k automatically in VDBSCAN. In: V. Mahadevan and Z. Jianhong, eds. Proceedings of Computer and Automation Engineering (ICCAE) 2010, 26–28 February Singapore. Singapore: IEEE, 38–41.
    • (2010) Proceedings of Computer and Automation Engineering (ICCAE) 2010 , pp. 38-41
    • Rasheduzzaman Chowdhury, A.K.M.1    Asikur Rahman, M.D.2
  • 62
    • 33746227724 scopus 로고    scopus 로고
    • Statistical mechanics of community detection
    • Reichardt, J. and Bornholdt, S., 2006. Statistical mechanics of community detection. Physical Review A, 74, 016110.
    • (2006) Physical Review A , vol.74 , pp. 016110
    • Reichardt, J.1    Bornholdt, S.2
  • 63
    • 84893600011 scopus 로고    scopus 로고
    • An efficient algorithm for community mining with overlap in social networks
    • Rhouma, D. and Romdhane, L.B., 2014. An efficient algorithm for community mining with overlap in social networks. Expert Systems with Applications, 41 (9), 4309–4321.
    • (2014) Expert Systems with Applications , vol.41 , Issue.9 , pp. 4309-4321
    • Rhouma, D.1    Romdhane, L.B.2
  • 64
    • 84925661009 scopus 로고    scopus 로고
    • ADCA: advanced density based clustering algorithm for spatial database system
    • Sahoo, A.K., 2013. ADCA: advanced density based clustering algorithm for spatial database system. International Journal of Computer Science and Mobile Computing, 2 (7), 41–47.
    • (2013) International Journal of Computer Science and Mobile Computing , vol.2 , Issue.7 , pp. 41-47
    • Sahoo, A.K.1
  • 65
    • 77954571408 scopus 로고    scopus 로고
    • Earthquake shakes Twitter users: real-time event detection by social sensors
    • Proceedings of the 19th international conference on WWW, Raleigh, NC: New York: ACM
    • Sakaki, T., Okazaki, M., and Matsuo, Y., 2010. Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on WWW, Raleigh, NC. New York: ACM, 851–860.
    • (2010) , pp. 851-860
    • Sakaki, T.1    Okazaki, M.2    Matsuo, Y.3
  • 66
    • 35248893285 scopus 로고    scopus 로고
    • Graph clustering
    • Schaeffer, S.E., 2007. Graph clustering. Computer Science Review, 1 (1), 27–64. doi:10.1016/j.cosrev.2007.05.001
    • (2007) Computer Science Review , vol.1 , Issue.1 , pp. 27-64
    • Schaeffer, S.E.1
  • 67
    • 70449482746 scopus 로고    scopus 로고
    • Finding community through information and communication technology during disaster events
    • CSCW’08, San Diego, CA: New York: ACM, November
    • Shklovski, I., Palen, L., and Sutton, J., 2008. Finding community through information and communication technology during disaster events. In: CSCW’08, 8–12November 2008 San Diego, CA. New York: ACM, 127–136.
    • (2008) , pp. 127-136
    • Shklovski, I.1    Palen, L.2    Sutton, J.3
  • 68
    • 0017283327 scopus 로고
    • Epidemiology of childhood leukaemia in greater London: a search for evidence of transmission assuming a possibly long latent period
    • Smith, P.G., et al., 1976. Epidemiology of childhood leukaemia in greater London: a search for evidence of transmission assuming a possibly long latent period. British Journal of Cancer, 33 (1), 1–8. doi:10.1038/bjc.1976.1
    • (1976) British Journal of Cancer , vol.33 , Issue.1 , pp. 1-8
    • Smith, P.G.1
  • 69
    • 84891745863 scopus 로고    scopus 로고
    • Group detection in complex networks: an algorithm and comparison of the state of the art
    • Šubelj, L. and Bajec, M., 2014. Group detection in complex networks: an algorithm and comparison of the state of the art. Physica A: Statistical Mechanics and Its Applications, 397, 144–156. doi:10.1016/j.physa.2013.12.003
    • (2014) Physica A: Statistical Mechanics and Its Applications , vol.397 , pp. 144-156
    • Šubelj, L.1    Bajec, M.2
  • 70
    • 77954026162 scopus 로고    scopus 로고
    • Microblogging during two natural hazards events: what twitter may contribute to situational awareness
    • Proceedings of the 28th international conference on human factors in computing systems, Atlanta, USA: New York: ACM
    • Vieweg, S., et al., 2010. Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: Proceedings of the 28th international conference on human factors in computing systems, Atlanta, USA. New York: ACM, 1079–1088.
    • (2010) , pp. 1079-1088
    • Vieweg, S.1
  • 71
    • 33749022779 scopus 로고    scopus 로고
    • Network community structure and loop coefficient method
    • Vragovic, I. and Louis, E., 2006. Network community structure and loop coefficient method. Physical Review E, 74, 016105. doi:10.1103/PhysRevE.74.016105
    • (2006) Physical Review E , vol.74 , pp. 016105
    • Vragovic, I.1    Louis, E.2
  • 72
    • 84925611392 scopus 로고    scopus 로고
    • Spatial structure and dynamics of urban communities
    • Proceedings of the 2011 workshop on pervasive urban applications, San Francisco, CA:
    • Walsh, F. and Pozdnoukhov, A., 2011. Spatial structure and dynamics of urban communities. In: Proceedings of the 2011 workshop on pervasive urban applications, 12–15 June San Francisco, CA. Unpublished.
    • (2011)
    • Walsh, F.1    Pozdnoukhov, A.2
  • 73
    • 84875436925 scopus 로고    scopus 로고
    • Geo-spatial event detection in the twitter stream
    • Serdyukov P., (ed), Berlin: Springer
    • Walther, M. and Kaisser, M., 2013. Geo-spatial event detection in the twitter stream. In: P. Serdyukov, et al., eds. Advances in information retrieval. Berlin: Springer, 356–367.
    • (2013) Advances in information retrieval , pp. 356-367
    • Walther, M.1    Kaisser, M.2
  • 74
    • 79951756832 scopus 로고    scopus 로고
    • Discovering overlapping groups in social media
    • IEEE international conference on data mining, Sydney: IEEE, December
    • Wang, X., et al., 2010. Discovering overlapping groups in social media. In: IEEE international conference on data mining, 13–17December 2010. Sydney: IEEE, 569–578.
    • (2010) , pp. 569-578
    • Wang, X.1
  • 75
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward, J.H.J., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244. doi:10.1080/01621459.1963.10500845
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 236-244
    • Ward, J.H.J.1
  • 76
    • 84874287099 scopus 로고    scopus 로고
    • Overlapping community detection in networks: the state of the art and comparative study
    • Xie, J., Kelley, S., and Szymanski, B., 2013. Overlapping community detection in networks: the state of the art and comparative study. ACM Computing Surveys, 45 (4), 1–35. doi:10.1145/2501654.2501657
    • (2013) ACM Computing Surveys , vol.45 , Issue.4
    • Xie, J.1    Kelley, S.2    Szymanski, B.3
  • 77
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu, R. and Wunsch II, D., 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16 (3), 645–678. doi:10.1109/TNN.2005.845141
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 78
    • 40949107741 scopus 로고    scopus 로고
    • Discovering global network communities based on local centralities
    • Yang, B. and Liu, J., 2008. Discovering global network communities based on local centralities. ACM Transactions on the Web (TWEB), 2 (1), 1–32. doi:10.1145/1326561.1326570
    • (2008) ACM Transactions on the Web (TWEB) , vol.2 , Issue.1 , pp. 1-32
    • Yang, B.1    Liu, J.2
  • 79
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: an efficient data clustering method for very large databases
    • Widom J., (ed), New York: ACM
    • Zhang, T., Ramakrishnan, R., and Livny, M., 1996. BIRCH: an efficient data clustering method for very large databases. In: J. Widom, ed. Proceedings of ACM SIGMOD. New York: ACM, 103–114.
    • (1996) Proceedings of ACM SIGMOD , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 80


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.