-
1
-
-
33744510833
-
-
For reviews on direct C-H transformations, see: (a) Wiley-VCH Weinheim
-
For reviews on direct C-H transformations, see: (a) G. Dyker Handbook of C-H Transformations Vols. 1 and 2 2005 Wiley-VCH Weinheim
-
(2005)
Handbook of C-H Transformations
, vol.12
-
-
Dyker, G.1
-
3
-
-
84925474997
-
-
special issue on C-H Functionalizations in Organic Synthesis
-
Chem. Soc. Rev. 2011, 40, (4), special issue on C-H Functionalizations in Organic Synthesis.
-
(2011)
Chem. Soc. Rev.
, vol.40
, Issue.4
-
-
-
4
-
-
84865838463
-
-
For a recent review on the C-H functionalization strategy in synthesis, see
-
For a recent review on the C-H functionalization strategy in synthesis, see: J. Yamaguchi, A.D. Yamaguchi, and K. Itami Angew. Chem., Int. Ed. 51 2012 8960
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 8960
-
-
Yamaguchi, J.1
Yamaguchi, A.D.2
Itami, K.3
-
10
-
-
84907522225
-
-
Y. Amaoka, M. Nagatomo, M. Watanabe, K. Tao, S. Kamijo, and M. Inoue Chem. Sci. 5 2014 4339
-
(2014)
Chem. Sci.
, vol.5
, pp. 4339
-
-
Amaoka, Y.1
Nagatomo, M.2
Watanabe, M.3
Tao, K.4
Kamijo, S.5
Inoue, M.6
-
11
-
-
79956143958
-
-
For other recent reports on C-H functionalization using photoactivated ketone, see: (a)
-
For other recent reports on C-H functionalization using photoactivated ketone, see: (a) T. Kamon, Y. Irifune, T. Tanaka, and T. Yoshimitsu Org. Lett. 13 2011 2674
-
(2011)
Org. Lett.
, vol.13
, pp. 2674
-
-
Kamon, T.1
Irifune, Y.2
Tanaka, T.3
Yoshimitsu, T.4
-
16
-
-
84908695231
-
-
S. Kamijo, M. Hirota, K. Tao, M. Watanabe, and T. Murafuji Tetrahedron Lett. 55 2014 5551
-
(2014)
Tetrahedron Lett.
, vol.55
, pp. 5551
-
-
Kamijo, S.1
Hirota, M.2
Tao, K.3
Watanabe, M.4
Murafuji, T.5
-
17
-
-
85042547097
-
-
The bond dissociation energy of propane [CH3CH2CH3] is 98.1 kcal/mol and that of diisopropyl ether [(CH3)2CHOCH(CH3)2] is 93.9 kcal/mol, see: CPC Press Boca Taton p 20 and p 74
-
The bond dissociation energy of propane [CH3CH2CH3] is 98.1 kcal/mol and that of diisopropyl ether [(CH3)2CHOCH(CH3)2] is 93.9 kcal/mol, see: Y.-R. Luo Comprehensive Handbook of Chemical Bond Energies 2007 CPC Press Boca Taton p 20 and p 74
-
(2007)
Comprehensive Handbook of Chemical Bond Energies
-
-
Luo, Y.-R.1
-
20
-
-
0003730862
-
-
Sulfonyl chlorides are generally employed as a chlorinating agent in radical chemistry, see: (a)
-
Sulfonyl chlorides are generally employed as a chlorinating agent in radical chemistry, see: (a) C. Chatgilialoglu J. Org. Chem. 51 1986 2871
-
(1986)
J. Org. Chem.
, vol.51
, pp. 2871
-
-
Chatgilialoglu, C.1
-
22
-
-
53849100684
-
-
A.-P. Schaffner, F. Montermini, D. Pozzi, V. Darmency, E.M. Scanlan, and P. Renaud Adv. Synth. Catal. 350 2008 1163
-
(2008)
Adv. Synth. Catal.
, vol.350
, pp. 1163
-
-
Schaffner, A.-P.1
Montermini, F.2
Pozzi, D.3
Darmency, V.4
Scanlan, E.M.5
Renaud, P.6
-
25
-
-
84925481879
-
-
Many examples of related acetal formations have been reported, however starting ethers were generally restricted to tetrahydrofuran and tetrahydropyran, see: (a)
-
Many examples of related acetal formations have been reported, however starting ethers were generally restricted to tetrahydrofuran and tetrahydropyran, see: (a) A.S. Atavin, A.N. Mirskova, E.F. Zorina, and T.S. Proskurina Khim. Geterotsikl. Soedin. 12 1973 1611
-
(1973)
Khim. Geterotsikl. Soedin.
, vol.12
, pp. 1611
-
-
Atavin, A.S.1
Mirskova, A.N.2
Zorina, E.F.3
Proskurina, T.S.4
-
28
-
-
84925545000
-
-
R.A. Zhuk, A. Berzina, V. Silina, E. Liepins, and S.A. Giller Khim. Geterotsikl. Soedin. 2 1979 166
-
(1979)
Khim. Geterotsikl. Soedin.
, vol.2
, pp. 166
-
-
Zhuk, R.A.1
Berzina, A.2
Silina, V.3
Liepins, E.4
Giller, S.A.5
-
34
-
-
0034707970
-
-
R. Baati, A. Valleix, C. Mioskowski, D.K. Barma, and J.R. Falck Org. Lett. 2 2000 485
-
(2000)
Org. Lett.
, vol.2
, pp. 485
-
-
Baati, R.1
Valleix, A.2
Mioskowski, C.3
Barma, D.K.4
Falck, J.R.5
-
38
-
-
77957987010
-
-
L. Troisi, C. Granito, L. Ronzini, F. Rosato, and V. Videtta Tetrahedron Lett. 51 2010 5980
-
(2010)
Tetrahedron Lett.
, vol.51
, pp. 5980
-
-
Troisi, L.1
Granito, C.2
Ronzini, L.3
Rosato, F.4
Videtta, V.5
-
39
-
-
84874603831
-
-
M.-K. Wang, Z.-L. Zhou, R.-Y. Tang, X.-G. Zhang, and C.-L. Deng Synlett 2013 737
-
(2013)
Synlett
, pp. 737
-
-
Wang, M.-K.1
Zhou, Z.-L.2
Tang, R.-Y.3
Zhang, X.-G.4
Deng, C.-L.5
-
40
-
-
84891566427
-
-
For photoinduced [2+2] cycloadditions, see: (a) Wiley-VCH Weinheim Chapters 5 and 7
-
For photoinduced [2+2] cycloadditions, see: (a) A. Albini, and M. Fagnoni Handbook of Synthetic Photochemistry 2010 Wiley-VCH Weinheim Chapters 5 and 7
-
(2010)
Handbook of Synthetic Photochemistry
-
-
Albini, A.1
Fagnoni, M.2
-
41
-
-
42549140767
-
-
For a recent review on photochemical reactions in organic synthesis, see: (b)
-
For a recent review on photochemical reactions in organic synthesis, see: (b) N. Hoffmann Chem. Rev. 108 2008 1052
-
(2008)
Chem. Rev.
, vol.108
, pp. 1052
-
-
Hoffmann, N.1
-
42
-
-
45049083074
-
-
The ether chlorination was unambiguously confirmed by monitoring the reaction of THF 1b with Me2NSO2Cl. The characteristic signal of α-chlorotetrahydrofuran 2b was observed at 6.34 ppm (br d, J = 3.0 Hz) in the 1H NMR chart of the crude reaction mixture. Further treatment with p-nitrobenzyl alcohol/ppts furnished the adduct 3b along with disappearance of 2b. For NMR data of α-chlorotetrahydrofuran, see
-
The ether chlorination was unambiguously confirmed by monitoring the reaction of THF 1b with Me2NSO2Cl. The characteristic signal of α-chlorotetrahydrofuran 2b was observed at 6.34 ppm (br d, J = 3.0 Hz) in the 1H NMR chart of the crude reaction mixture. Further treatment with p-nitrobenzyl alcohol/ppts furnished the adduct 3b along with disappearance of 2b. For NMR data of α-chlorotetrahydrofuran, see: K. Cai, Y.-J. Jiang, S.-Y. Zhang, Y.-Q. Fan, and Y.-J. Pan Tetrahedron Lett. 49 2008 4652
-
(2008)
Tetrahedron Lett.
, vol.49
, pp. 4652
-
-
Cai, K.1
Jiang, Y.-J.2
Zhang, S.-Y.3
Fan, Y.-Q.4
Pan, Y.-J.5
|