ALLELE;
ARTICLE;
BINDING SITE;
BLOOD SAMPLING;
GENE EXPRESSION;
GENE LINKAGE DISEQUILIBRIUM;
GENETIC ASSOCIATION;
GENETIC VARIABILITY;
GENOTYPE;
HUMAN;
JAPANESE (PEOPLE);
NON INSULIN DEPENDENT DIABETES MELLITUS;
PANCREAS ISLET;
PRIORITY JOURNAL;
QUANTITATIVE TRAIT LOCUS;
REAL TIME POLYMERASE CHAIN REACTION;
RISK FACTOR;
RNA EXTRACTION;
SINGLE NUCLEOTIDE POLYMORPHISM;
BLOOD;
CASE CONTROL STUDY;
CAUCASIAN;
CHEMISTRY;
DIABETES MELLITUS, TYPE 2;
EPIDEMIOLOGY;
ETHNOLOGY;
GENETIC PREDISPOSITION;
GENETICS;
INTRON;
PHENOTYPE;
STATISTICAL MODEL;
UNITED KINGDOM;
CASE-CONTROL STUDIES;
CYCLIN-DEPENDENT KINASE 5;
DIABETES MELLITUS, TYPE 2;
EUROPEAN CONTINENTAL ANCESTRY GROUP;
GENETIC PREDISPOSITION TO DISEASE;
GENOME-WIDE ASSOCIATION STUDY;
GREAT BRITAIN;
HUMANS;
INTRONS;
ISLETS OF LANGERHANS;
LINEAR MODELS;
PHENOTYPE;
POLYMORPHISM, SINGLE NUCLEOTIDE;
RISK FACTORS;
RNA, UNTRANSLATED;
Mahajan A, Go MJ, Zhang W et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–244
Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice
COI: 1:CAS:528:DC%2BC3MXhtFOhsbfN, PID: 21841312
Wei FY, Suzuki T, Watanabe S et al (2011) Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J Clin Invest 121:3598–3608
Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity
COI: 1:CAS:528:DC%2BC2cXhsV2ls7rM, PID: 24296717
Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171
Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human
COI: 1:CAS:528:DC%2BC2cXht1Orsb3L, PID: 24760768
Zhou B, Wei FY, Kanai N, Fujimura A, Kaitsuka T, Tomizawa K (2014) Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human. Hum Mol Genet 23:4639–4650
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408
Genetic and epigenetic regulation of human lincRNA gene expression
COI: 1:CAS:528:DC%2BC3sXhvVKisrzN, PID: 24268656
Popadin K, Gutierrez-Arcelus M, Dermitzakis ET, Antonarakis SE (2013) Genetic and epigenetic regulation of human lincRNA gene expression. Am J Hum Genet 93:1015–1026
Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome
COI: 1:CAS:528:DC%2BC3sXhsVOls7fI, PID: 23716500
Nica AC, Ongen H, Irminger JC et al (2013) Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res 23:1554–1562
Ragvin A, Moro E, Fredman D et al (2010) Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc Natl Acad Sci U S A 107:775–780