메뉴 건너뛰기




Volumn , Issue , 2015, Pages 494-501

Interleaved regression tree field cascades for blind image deconvolution

Author keywords

[No Author keywords available]

Indexed keywords

CAMERAS; FORESTRY; IMAGE QUALITY; ITERATIVE METHODS;

EID: 84925438495     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WACV.2015.72     Document Type: Conference Paper
Times cited : (25)

References (34)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • May
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. IEEE TPAMI, 33(5):898-916, May 2011.
    • (2011) IEEE TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 77749243157 scopus 로고    scopus 로고
    • Fast motion deblurring
    • Dec.
    • S. Cho and S. Lee. Fast motion deblurring. ACM T. Graphics, 28(5), Dec. 2009.
    • (2009) ACM T. Graphics , vol.28 , Issue.5
    • Cho, S.1    Lee, S.2
  • 5
    • 52649143252 scopus 로고    scopus 로고
    • Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data
    • Oct.
    • A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE TIP, 17(10):1737-1754, Oct. 2008.
    • (2008) IEEE TIP , vol.17 , Issue.10 , pp. 1737-1754
    • Foi, A.1    Trimeche, M.2    Katkovnik, V.3    Egiazarian, K.4
  • 6
    • 84887323855 scopus 로고    scopus 로고
    • How well do filter-based MRFs model natural images?
    • Q. Gao and S. Roth. How well do filter-based MRFs model natural images? In Pattern Recognition (DAGM) 2012.
    • (2012) Pattern Recognition (DAGM)
    • Gao, Q.1    Roth, S.2
  • 8
    • 84881043004 scopus 로고    scopus 로고
    • Loss-specific training of non-parametric image restoration models: A new state of the art
    • J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image restoration models: A new state of the art. In ECCV 2012.
    • (2012) ECCV
    • Jancsary, J.1    Nowozin, S.2    Rother, C.3
  • 9
    • 84866674114 scopus 로고    scopus 로고
    • Regression tree fields - An efficient, non-parametric approach to image labeling problems
    • J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression tree fields - an efficient, non-parametric approach to image labeling problems. In CVPR 2012.
    • (2012) CVPR
    • Jancsary, J.1    Nowozin, S.2    Sharp, T.3    Rother, C.4
  • 10
    • 77956384931 scopus 로고    scopus 로고
    • Image deblurring using inertial measurement sensors
    • July
    • N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. Image deblurring using inertial measurement sensors. ACM T. Graphics, 29(4):30:1-30.9, July 2010.
    • (2010) ACM T. Graphics , vol.29 , Issue.4 , pp. 301-309
    • Joshi, N.1    Kang, S.B.2    Zitnick, C.L.3    Szeliski, R.4
  • 11
    • 51949099826 scopus 로고    scopus 로고
    • PSF estimation using sharp edge prediction
    • N. Joshi, R. Szeliski, and D. J. Kriegman. PSF estimation using sharp edge prediction. In CVPR 2008.
    • (2008) CVPR
    • Joshi, N.1    Szeliski, R.2    Kriegman, D.J.3
  • 12
    • 84881081051 scopus 로고    scopus 로고
    • Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database
    • R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling. Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In ECCV 2012.
    • (2012) ECCV
    • Köhler, R.1    Hirsch, M.2    Mohler, B.3    Schölkopf, B.4    Harmeling, S.5
  • 13
    • 84858712496 scopus 로고    scopus 로고
    • Fast image deconvolution using hyper-Laplacian priors
    • D. Krishnan and R. Fergus. Fast image deconvolution using hyper-Laplacian priors. In NIPS, 2009.
    • (2009) NIPS
    • Krishnan, D.1    Fergus, R.2
  • 14
    • 80052910212 scopus 로고    scopus 로고
    • Blind deconvolution using a normalized sparsity measure
    • D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity measure. In CVPR 2011.
    • (2011) CVPR
    • Krishnan, D.1    Tay, T.2    Fergus, R.3
  • 15
    • 80052887928 scopus 로고    scopus 로고
    • Efficient marginal likelihood optimization in blind deconvolution
    • A. Levin, Y.Weiss, F. Durand, andW. T. Freeman. Efficient marginal likelihood optimization in blind deconvolution. In CVPR 2011.
    • (2011) CVPR
    • Levin, A.1    Weiss, Y.2    Durand, F.3    Freeman, W.T.4
  • 16
    • 70450174344 scopus 로고    scopus 로고
    • Understanding and evaluating blind deconvolution algorithms
    • A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind deconvolution algorithms. In CVPR 2009.
    • (2009) CVPR
    • Levin, A.1    Weiss, Y.2    Durand, F.3    Freeman, W.T.4
  • 17
    • 84925395305 scopus 로고    scopus 로고
    • Blind deblurring using internal patch recurrence
    • T. Michaeli and M. Irani. Blind deblurring using internal patch recurrence. In ECCV 2014.
    • (2014) ECCV
    • Michaeli, T.1    Irani, M.2
  • 18
    • 84911440991 scopus 로고    scopus 로고
    • Total variation blind deconvolution: The devil is in the details
    • D. Perrone and P. Favaro. Total variation blind deconvolution: The devil is in the details. In CVPR 2014.
    • (2014) CVPR
    • Perrone, D.1    Favaro, P.2
  • 20
    • 84911451024 scopus 로고    scopus 로고
    • Shrinkage fields for effective image restoration
    • U. Schmidt and S. Roth. Shrinkage fields for effective image restoration. In CVPR 2014.
    • (2014) CVPR
    • Schmidt, U.1    Roth, S.2
  • 22
    • 80052912678 scopus 로고    scopus 로고
    • Bayesian deblurring with integrated noise estimation
    • U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation. In CVPR 2011.
    • (2011) CVPR
    • Schmidt, U.1    Schelten, K.2    Roth, S.3
  • 23
  • 24
    • 49249099286 scopus 로고    scopus 로고
    • High-quality motion deblurring from a single image
    • Aug.
    • Q. Shan, J. Jia, and A. Agarwala. High-quality motion deblurring from a single image. ACM T. Graphics, 27(3), Aug. 2008.
    • (2008) ACM T. Graphics , vol.27 , Issue.3
    • Shan, Q.1    Jia, J.2    Agarwala, A.3
  • 25
    • 84881080781 scopus 로고    scopus 로고
    • Edge-based blur kernel estimation using patch priors
    • L. Sun, S. Cho, J. Wang, and J. Hays. Edge-based blur kernel estimation using patch priors. In ICCP 2013.
    • (2013) ICCP
    • Sun, L.1    Cho, S.2    Wang, J.3    Hays, J.4
  • 26
    • 84959244212 scopus 로고    scopus 로고
    • Good image priors for nonblind deconvolution: Generic vs specific
    • L. Sun, S. Cho, J. Wang, and J. Hays. Good image priors for nonblind deconvolution: Generic vs specific. In ECCV 2014.
    • (2014) ECCV
    • Sun, L.1    Cho, S.2    Wang, J.3    Hays, J.4
  • 27
    • 34948821220 scopus 로고    scopus 로고
    • Learning Gaussian conditional random fields for low-level vision
    • M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman. Learning Gaussian conditional random fields for low-level vision. In CVPR 2007.
    • (2007) CVPR
    • Tappen, M.F.1    Liu, C.2    Adelson, E.H.3    Freeman, W.T.4
  • 31
    • 84919907377 scopus 로고    scopus 로고
    • Analysis of Bayesian blind deconvolution
    • D. Wipf and H. Zhang. Analysis of Bayesian blind deconvolution. In EMMCVPR 2013.
    • (2013) EMMCVPR
    • Wipf, D.1    Zhang, H.2
  • 32
    • 80052881205 scopus 로고    scopus 로고
    • Two-phase kernel estimation for robust motion deblurring
    • L. Xu and J. Jia. Two-phase kernel estimation for robust motion deblurring. In ECCV 2010.
    • (2010) ECCV
    • Xu, L.1    Jia, J.2
  • 33
    • 84887395957 scopus 로고    scopus 로고
    • Unnatural L0 sparse representation for natural image deblurring
    • L. Xu, S. Zheng, and J. Jia. Unnatural L0 sparse representation for natural image deblurring. In CVPR 2013.
    • (2013) CVPR
    • Xu, L.1    Zheng, S.2    Jia, J.3
  • 34
    • 84856650948 scopus 로고    scopus 로고
    • From learning models of natural image patches to whole image restoration
    • D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In ICCV 2011.
    • (2011) ICCV
    • Zoran, D.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.