-
1
-
-
84880681658
-
Ensembles as a sequence of classifiers
-
Asker, L., Maclin, R.: Ensembles as a sequence of classifiers. In: Proc. of IJCAI, pp. 860–865 (1997)
-
(1997)
Proc. Of IJCAI
, pp. 860-865
-
-
Asker, L.1
Maclin, R.2
-
2
-
-
85034054192
-
SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
-
Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proc. of LREC (2010)
-
(2010)
Proc. Of LREC
-
-
Baccianella, S.1
Esuli, A.2
Sebastiani, F.3
-
3
-
-
84890477883
-
Improving sentiment analysis in twitter using multilingual machine translated data
-
Balahur, A., Turchi, M.: Improving sentiment analysis in twitter using multilingual machine translated data. In: Proc. of RANLP 2013, pp. 49–55 (2013)
-
(2013)
Proc. Of RANLP 2013
, pp. 49-55
-
-
Balahur, A.1
Turchi, M.2
-
4
-
-
80053418268
-
Robust sentiment detection on twitter from biased and noisy data
-
Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: Proc. of COLING 2010, pp. 36–44 (2010)
-
(2010)
Proc. Of COLING 2010
, pp. 36-44
-
-
Barbosa, L.1
Feng, J.2
-
5
-
-
78650162978
-
Sentiment knowledge discovery in twitter streaming data
-
Bifet, A., Frank, E.: Sentiment knowledge discovery in twitter streaming data. In: Proc. of DS 2010, pp. 1–15 (2010)
-
(2010)
Proc. Of DS 2010
, pp. 1-15
-
-
Bifet, A.1
Frank, E.2
-
6
-
-
85113590917
-
Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena
-
Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: Proc. of ICWSM 2011 (2011)
-
(2011)
Proc. Of ICWSM 2011
-
-
Bollen, J.1
Mao, H.2
Pepe, A.3
-
7
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
80053220404
-
Cooooooooooooooollllllllllllll!!!!!!!!!!!!!! Using word lengthening to detect sentiment in microblogs
-
Brody, S., Diakopoulos, N.: Cooooooooooooooollllllllllllll!!!!!!!!!!!!!! Using word lengthening to detect sentiment in microblogs. In: Proc. of EMNLP 2011, pp. 562–570 (2011)
-
(2011)
Proc. Of EMNLP 2011
, pp. 562-570
-
-
Brody, S.1
Diakopoulos, N.2
-
9
-
-
85022919385
-
Class-based n-gram models of natural language
-
Brown, P.F., Della Pietra, V.J., de Souza, P.V., Lai, J.C., Mercer, R.L.: Class-based n-gram models of natural language. Computational Linguistics 18(4), 467–479 (1992)
-
(1992)
Computational Linguistics
, vol.18
, Issue.4
, pp. 467-479
-
-
Brown, P.F.1
Della Pietra, V.J.2
De Souza, P.V.3
Lai, J.C.4
Mercer, R.L.5
-
10
-
-
85025077601
-
A joint model of feature mining and sentiment analysis for product review rating
-
In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.), Springer, Heidelberg
-
de Albornoz, J.C., Plaza, L., Gervás, P., Díaz, A.: A joint model of feature mining and sentiment analysis for product review rating. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 55–66. Springer, Heidelberg (2011)
-
(2011)
ECIR 2011. LNCS
, vol.6611
, pp. 55-66
-
-
De Albornoz, J.C.1
Plaza, L.2
Gervás, P.3
Díaz, A.4
-
11
-
-
84865262792
-
ARES: A Retrieval Engine Based on Sentiments
-
In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.), Springer, Heidelberg
-
Demartini, G.: ARES: A Retrieval Engine Based on Sentiments. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 772–775. Springer, Heidelberg (2011)
-
(2011)
ECIR 2011. LNCS
, vol.6611
, pp. 772-775
-
-
Demartini, G.1
-
12
-
-
77954168866
-
Characterizing debate performance via aggregated twitter sentiment
-
Diakopoulos, N., Shamma, D.A.: Characterizing debate performance via aggregated twitter sentiment. In: Proc. of CHI 2010, pp. 1195–1198 (2010)
-
(2010)
Proc. Of CHI 2010
, pp. 1195-1198
-
-
Diakopoulos, N.1
Shamma, D.A.2
-
13
-
-
84875466000
-
Sentiment classification based on phonetic characteristics
-
Ermakov, S., Ermakova, L.: Sentiment classification based on phonetic characteristics. In: Proc. of ECIR 2013, pp. 706–709 (2013)
-
(2013)
Proc. Of ECIR 2013
, pp. 706-709
-
-
Ermakov, S.1
Ermakova, L.2
-
14
-
-
84875706201
-
Techniques and applications for sentiment analysis
-
Feldman, R.: Techniques and applications for sentiment analysis. CACM 56(4), 82–89 (2013)
-
(2013)
CACM
, vol.56
, Issue.4
, pp. 82-89
-
-
Feldman, R.1
-
15
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. of ICML 1996, pp. 148–156 (1996)
-
(1996)
Proc. Of ICML 1996
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
16
-
-
84878065641
-
A balanced ensemble approach to weighting classifiers for text classification
-
Fung, G.P.C., Yu, J.X., Wang, H., Cheung, D.W., Liu, H.: A balanced ensemble approach to weighting classifiers for text classification. In: Proc. of ICDM2006, pp. 869–873 (2006)
-
(2006)
Proc. Of ICDM2006
, pp. 869-873
-
-
Fung, G.1
Yu, J.X.2
Wang, H.3
Cheung, D.W.4
Liu, H.5
-
17
-
-
79953762206
-
-
Project Report CS224N, Stanford University
-
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Project Report CS224N, Stanford University (2009)
-
(2009)
Twitter Sentiment Classification Using Distant Supervision
-
-
Go, A.1
Bhayani, R.2
Huang, L.3
-
18
-
-
85040558349
-
GU-MLT-LT: Sentiment analysis of short messages using linguistic features and stochastic gradient descent
-
Günther, T., Furrer, L.: GU-MLT-LT: Sentiment analysis of short messages using linguistic features and stochastic gradient descent. In: Proc. of SemEval 2013, pp. 328–332 (2013)
-
(2013)
Proc. Of Semeval 2013
, pp. 328-332
-
-
Günther, T.1
Furrer, L.2
-
19
-
-
85025150063
-
Latent sentiment model for weakly-supervised cross-lingual sentiment classification
-
In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.), Springer, Heidelberg
-
He, Y.: Latent sentiment model for weakly-supervised cross-lingual sentiment classification. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 214–225. Springer, Heidelberg (2011)
-
(2011)
ECIR 2011. LNCS
, vol.6611
, pp. 214-225
-
-
He, Y.1
-
20
-
-
12244305149
-
Mining and summarizing customer reviews
-
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proc. of KDD 2004, pp. 168–177 (2004)
-
(2004)
Proc. Of KDD 2004
, pp. 168-177
-
-
Hu, M.1
Liu, B.2
-
21
-
-
83055184650
-
Target-dependent twitter sentiment classification
-
Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proc. of HLT 2011, pp. 151–160 (2011)
-
(2011)
Proc. Of HLT 2011
, pp. 151-160
-
-
Jiang, L.1
Yu, M.2
Zhou, M.3
Liu, X.4
Zhao, T.5
-
22
-
-
84860122729
-
Usefulness of sentiment analysis
-
In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.), Springer, Heidelberg
-
Karlgren, J., Sahlgren, M., Olsson, F., Espinoza, F., Hamfors, O.: Usefulness of sentiment analysis. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 426–435. Springer, Heidelberg (2012)
-
(2012)
ECIR 2012. LNCS
, vol.7224
, pp. 426-435
-
-
Karlgren, J.1
Sahlgren, M.2
Olsson, F.3
Espinoza, F.4
Hamfors, O.5
-
24
-
-
79958249386
-
Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon
-
Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. In: Proc. of HLT 2010 Workshop CAAGET 2010, pp. 26–34 (2010)
-
(2010)
Proc. Of HLT 2010 Workshop CAAGET 2010
, pp. 26-34
-
-
Mohammad, S.M.1
Turney, P.D.2
-
25
-
-
84881408290
-
Crowdsourcing a word-emotion association lexicon
-
Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Computational Intelligence 29(3), 436–465 (2013)
-
(2013)
Computational Intelligence
, vol.29
, Issue.3
, pp. 436-465
-
-
Mohammad, S.M.1
Turney, P.D.2
-
26
-
-
85008667877
-
NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets
-
Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. In: Proc. of SemEval 2013, pp. 321–327 (2013)
-
(2013)
Proc. Of Semeval 2013
, pp. 321-327
-
-
Mohammad, S.M.1
Kiritchenko, S.2
Zhu, X.3
-
27
-
-
84899965363
-
Sentiment analysis and the impact of employee satisfaction on firm earnings
-
In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C., de Jong, F., Radinsky, K., Hofmann, K. (eds.), Springer, Heidelberg
-
Moniz, A., de Jong, F.: Sentiment analysis and the impact of employee satisfaction on firm earnings. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 519–527. Springer, Heidelberg (2014)
-
(2014)
ECIR 2014. LNCS
, vol.8416
, pp. 519-527
-
-
Moniz, A.1
De Jong, F.2
-
28
-
-
85035757758
-
Semeval-2013 task 2: Sentiment analysis in Twitter
-
Nakov, P., Kozareva, Z., Ritter, A., Rosenthal, S., Stoyanov, V., Wilson, T.: Semeval-2013 task 2: Sentiment analysis in Twitter. In: Proc. of SemEval 2013, pp. 312–320 (2013)
-
(2013)
Proc. Of Semeval 2013
, pp. 312-320
-
-
Nakov, P.1
Kozareva, Z.2
Ritter, A.3
Rosenthal, S.4
Stoyanov, V.5
Wilson, T.6
-
29
-
-
84874354132
-
A new ANEW: Evaluation of a word list for sentiment analysis in microblogs
-
Nielsen, F.Å.: A new ANEW: evaluation of a word list for sentiment analysis in microblogs. In: Proc. of ESWC 2011 Workshop MSM 2011, pp. 93–98 (2011)
-
(2011)
Proc. Of ESWC 2011 Workshop MSM 2011
, pp. 93-98
-
-
Nielsen, F.1
-
31
-
-
84919651291
-
Improved part-of-speech tagging for online conversational text with word clusters
-
Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., Smith, N.A.: Improved part-of-speech tagging for online conversational text with word clusters. In: Proc. of HLT 2013, pp. 380–390 (2013)
-
(2013)
Proc. Of HLT 2013
, pp. 380-390
-
-
Owoputi, O.1
O’Connor, B.2
Dyer, C.3
Gimpel, K.4
Schneider, N.5
Smith, N.A.6
-
32
-
-
85141803251
-
Thumbs up?: Sentiment classification using machine learning techniques
-
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proc. of EMNLP 2002, pp. 79–86 (2002)
-
(2002)
Proc. Of EMNLP 2002
, pp. 79-86
-
-
Pang, B.1
Lee, L.2
Vaithyanathan, S.3
-
33
-
-
33748611921
-
Ensemble based systems in decision making
-
Polikar, R.: Ensemble based systems in decision making. IEEE CASS Mag 6(3), 21–45 (2006)
-
(2006)
IEEE CASS Mag
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
34
-
-
84948481845
-
An algorithm for suffix stripping
-
Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
-
(1980)
Program
, vol.14
, Issue.3
, pp. 130-137
-
-
Porter, M.1
-
35
-
-
85040547663
-
Klue: Simple and robust methods for polarity classification
-
Proisl, T., Greiner, P., Evert, S., Kabashi, B.: Klue: Simple and robust methods for polarity classification. In: Proc. of SemEval 2013, pp. 395–401 (2013)
-
(2013)
Proc. Of Semeval 2013
, pp. 395-401
-
-
Proisl, T.1
Greiner, P.2
Evert, S.3
Kabashi, B.4
-
36
-
-
75149176174
-
Ensemble-based classifiers
-
Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33(1-2), 1–39 (2010)
-
(2010)
Artificial Intelligence Review
, vol.33
, Issue.1-2
, pp. 1-39
-
-
Rokach, L.1
-
37
-
-
84904195795
-
Ensemble methods for multi-label classification
-
Rokach, L., Schclar, A., Itach, E.: Ensemble methods for multi-label classification. Expert Systems with Applications 41(16), 7507–7523 (2014)
-
(2014)
Expert Systems with Applications
, vol.41
, Issue.16
, pp. 7507-7523
-
-
Rokach, L.1
Schclar, A.2
Itach, E.3
-
38
-
-
85114089698
-
Semeval-2014 task 9: Sentiment analysis in twitter
-
Rosenthal, S., Ritter, A., Nakov, P., Stoyanov, V.: Semeval-2014 task 9: Sentiment analysis in twitter. In: Proc. of SemEval 2014, pp. 73–80 (2014)
-
(2014)
Proc. Of Semeval 2014
, pp. 73-80
-
-
Rosenthal, S.1
Ritter, A.2
Nakov, P.3
Stoyanov, V.4
-
39
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
40
-
-
84906924350
-
Learning sentiment-specific word embedding for twitter sentiment classification
-
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proc. of ACL 2014, pp. 1555–1565 (2014)
-
(2014)
Proc. Of ACL 2014
, pp. 1555-1565
-
-
Tang, D.1
Wei, F.2
Yang, N.3
Zhou, M.4
Liu, T.5
Qin, B.6
-
41
-
-
85136072040
-
Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews
-
Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proc. of ACL 2002, pp. 417–424 (2002)
-
(2002)
Proc. Of ACL 2002
, pp. 417-424
-
-
Turney, P.D.1
-
42
-
-
80053247760
-
Recognizing contextual polarity in phrase-level sentiment analysis
-
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proc. of EMNLP 2005, pp. 347–354 (2005)
-
(2005)
Proc. Of EMNLP 2005
, pp. 347-354
-
-
Wilson, T.1
Wiebe, J.2
Hoffmann, P.3
|