메뉴 건너뛰기




Volumn , Issue , 2013, Pages 49-55

Improving sentiment analysis in twitter using multilingual machine translated data

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER AIDED LANGUAGE TRANSLATION; SENTIMENT ANALYSIS;

EID: 84890477883     PISSN: 13138502     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (38)

References (17)
  • 8
    • 85028156346 scopus 로고    scopus 로고
    • Twitter as a corpus for sentiment analysis and opinion mining
    • Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Valletta, Malta; ELRA, may. European Language Resources Association
    • Alexander Pak and Patrick Paroubek. 2010. Twitter as a corpus for sentiment analysis and opinion mining. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10), Valletta, Malta; ELRA, may. European Language Resources Association. 19-21.
    • (2010) Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC'10) , pp. 19-21
    • Pak, A.1    Paroubek, P.2
  • 10
    • 84859916751 scopus 로고    scopus 로고
    • Using emoticons to reduce dependency in machine learning techniques for sentiment classification
    • Stroudsburg, PA, USA. Association for Computational Linguistics
    • Jonathon Read. 2005. Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In Proceedings of the ACL Student Research Workshop, ACLstudent '05, pages 43-48, Stroudsburg, PA, USA. Association for Computational Linguistics.
    • (2005) Proceedings of the ACL Student Research Workshop, ACLstudent '05 , pp. 43-48
    • Read, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.