메뉴 건너뛰기




Volumn 16, Issue 2, 2015, Pages 338-345

Letter to the Editor: On the term 'interaction' and related phrases in the literature on Random Forests

Author keywords

Conditional inference trees; Conditional variable importance; Correlation; Interaction; Random forest; Statistics

Indexed keywords

ALGORITHM; BIOMEDICINE; DATA MINING; HUMAN;

EID: 84925390856     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbu012     Document Type: Letter
Times cited : (46)

References (32)
  • 1
    • 84871787691 scopus 로고    scopus 로고
    • Data mining in the life sciences with random forest: a walk in the park or lost in the jungle?
    • Touw WG, Bayjanov JR, Overmars L, et al. Data mining in the life sciences with random forest: a walk in the park or lost in the jungle? Brief Bioinform 2013;14:315-26.
    • (2013) Brief Bioinform , vol.14 , pp. 315-326
    • Touw, W.G.1    Bayjanov, J.R.2    Overmars, L.3
  • 2
    • 71249153009 scopus 로고    scopus 로고
    • Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects
    • Kim Y, Wojciechowski R, Sung H, et al. Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proceedings 2009;3:S64.
    • (2009) BMC Proceedings , vol.3 , pp. S64
    • Kim, Y.1    Wojciechowski, R.2    Sung, H.3
  • 8
    • 0036797562 scopus 로고    scopus 로고
    • Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans
    • Cordell HJ. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 2002;11:2463-8.
    • (2002) Hum Mol Genet , vol.11 , pp. 2463-2468
    • Cordell, H.J.1
  • 9
    • 84971185409 scopus 로고
    • XV-the correlation between relatives on the supposition of Mendelian inheritance
    • Fisher RA. XV-the correlation between relatives on the supposition of Mendelian inheritance. TRSoc Edin 1918;52: 399-433.
    • (1918) TRSoc Edin , vol.52 , pp. 399-433
    • Fisher, R.A.1
  • 11
    • 84867083314 scopus 로고    scopus 로고
    • SNP interaction detection with random forests in high-dimensional genetic data
    • Winham S, Colby C, Freimuth R, et al. SNP interaction detection with random forests in high-dimensional genetic data. BMC Bioinformatics 2012;13:164.
    • (2012) BMC Bioinformatics , vol.13 , pp. 164
    • Winham, S.1    Colby, C.2    Freimuth, R.3
  • 12
    • 11244293921 scopus 로고    scopus 로고
    • A global view of epistasis
    • Moore HA. A global view of epistasis. Nat Genet 2005;37: 13-14.
    • (2005) Nat Genet , vol.37 , pp. 13-14
    • Moore, H.A.1
  • 13
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: A conditional inference framework
    • Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional inference framework. JComputGraph Stat 2006;15:651-74.
    • (2006) JComputGraph Stat , vol.15 , pp. 651-674
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 15
  • 16
    • 84887476291 scopus 로고    scopus 로고
    • Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in drosophila
    • St Laurent G, Tackett MR, Nechkin S, et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in drosophila. Nat StructMol Biol 2013;20:1333-9.
    • (2013) Nat StructMol Biol , vol.20 , pp. 1333-1339
    • St Laurent, G.1    Tackett, M.R.2    Nechkin, S.3
  • 17
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl C, Boulesteix AL, Zeileis A, et al. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 2007;8:25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3
  • 18
    • 82255174148 scopus 로고    scopus 로고
    • Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures
    • Nicodemus KK. Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures. Brief Bioinform 2011;12:369-73.
    • (2011) Brief Bioinform , vol.12 , pp. 369-373
    • Nicodemus, K.K.1
  • 19
    • 84861813244 scopus 로고    scopus 로고
    • Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations
    • Boulesteix AL, Bender A, Lorenzo Bermejo J, et al. Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations. Brief Bioinform 2012;13:292-304.
    • (2012) Brief Bioinform , vol.13 , pp. 292-304
    • Boulesteix, A.L.1    Bender, A.2    Lorenzo Bermejo, J.3
  • 20
    • 0035515549 scopus 로고    scopus 로고
    • Criticality of predictors in multiple regression
    • Azen R, Budescu CV, Reiser B. Criticality of predictors in multiple regression. BritJMath Stat Psy 2001;54:201-25.
    • (2001) BritJMath Stat Psy , vol.54 , pp. 201-225
    • Azen, R.1    Budescu, C.V.2    Reiser, B.3
  • 21
    • 84873167556 scopus 로고    scopus 로고
    • Random Forests-original implementation
    • 24 March 2014, date last accessed
    • Breiman L, Cutler A. Random Forests-original implementation. http://www.stat.berkeley.edu/~breiman/RandomForests/, 2004 (24 March 2014, date last accessed).
    • (2004)
    • Breiman, L.1    Cutler, A.2
  • 22
    • 84868022340 scopus 로고    scopus 로고
    • Breiman and Cutler's Random Forests for Classification and Regression
    • URL, 24 March 2014, date last accessed
    • Liaw A, Wiener M. Breiman and Cutler's Random Forests for Classification and Regression, 2012. URL http://CRAN.R-project.org/. R package version 4.6-7. (24 March 2014, date last accessed).
    • (2012)
    • Liaw, A.1    Wiener, M.2
  • 23
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
    • Strobl C, Malley JD, Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. PsycholMethods 2009;14:323-48.
    • (2009) PsycholMethods , vol.14 , pp. 323-348
    • Strobl, C.1    Malley, J.D.2    Tutz, G.3
  • 24
    • 84873187093 scopus 로고    scopus 로고
    • Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
    • Boulesteix AL, Janitza S, Kruppa J, et al. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscipl Rev Data Mining Knowl Discov 2012;2: 493-507.
    • (2012) Wiley Interdiscipl Rev Data Mining Knowl Discov , vol.2 , pp. 493-507
    • Boulesteix, A.L.1    Janitza, S.2    Kruppa, J.3
  • 26
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Di{dotless}az-Uriarte R, Alvarez De AS. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006;7:3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez De, A.S.2
  • 27
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008;9:319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 28
    • 70450064693 scopus 로고    scopus 로고
    • Variable importance assessment in regression: linear regression versus random forest
    • Grömping U. Variable importance assessment in regression: linear regression versus random forest. Am Stat 2009;63: 308-19.
    • (2009) Am Stat , vol.63 , pp. 308-319
    • Grömping, U.1
  • 29
    • 84871753828 scopus 로고    scopus 로고
    • Pathway hunting by random survival forests
    • Chen X, Ishwaran H. Pathway hunting by random survival forests. Bioinformatics 2013;29:99-105.
    • (2013) Bioinformatics , vol.29 , pp. 99-105
    • Chen, X.1    Ishwaran, H.2
  • 30
    • 63449100294 scopus 로고    scopus 로고
    • Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis
    • McKinney BA, Crowe JE Jr, Guo J, et al. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis. PLoS Genet 2009;5:e1000432.
    • (2009) PLoS Genet , vol.5 , pp. e1000432
    • McKinney, B.A.1    Crowe Jr, J.E.2    Guo, J.3
  • 31
    • 84866761348 scopus 로고    scopus 로고
    • Application of random forests to association studies using mitochondrial single nucleotide polymorphisms
    • Kim Y, Kim H. Application of random forests to association studies using mitochondrial single nucleotide polymorphisms. Genom Inform 2007;5:168-73.
    • (2007) Genom Inform , vol.5 , pp. 168-173
    • Kim, Y.1    Kim, H.2
  • 32
    • 84856689961 scopus 로고    scopus 로고
    • Binding profiles of chromatin-modifying proteins are predictive for transcriptional activity and promoter-proximal pausing
    • Sakoparnig T, Kockmann T, Paro R, et al. Binding profiles of chromatin-modifying proteins are predictive for transcriptional activity and promoter-proximal pausing. JComputBiol 2012;19:126-38.
    • (2012) JComputBiol , vol.19 , pp. 126-138
    • Sakoparnig, T.1    Kockmann, T.2    Paro, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.