메뉴 건너뛰기




Volumn 186, Issue , 2015, Pages 141-148

Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode

Author keywords

CO2 reduction; Electromethanogenesis; Electron transfer; Methane production; Microbial electrolysis cells

Indexed keywords

CARBON; CARBON DIOXIDE; CATHODES; ELECTRODES; ELECTROLYSIS; ELECTROLYTIC CELLS; ELECTRON TRANSITIONS; ELECTRONS; FLUORESCENCE MICROSCOPY; METHANE; METHANOGENS; MICROBIAL FUEL CELLS; SCANNING ELECTRON MICROSCOPY;

EID: 84925358714     PISSN: 09608524     EISSN: 18732976     Source Type: Journal    
DOI: 10.1016/j.biortech.2015.03.064     Document Type: Article
Times cited : (119)

References (32)
  • 1
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    • Call D., Logan B.E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 2008, 42:3401-3406.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 3401-3406
    • Call, D.1    Logan, B.E.2
  • 2
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng S., Xing D., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43:3953-3958.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 3
    • 33644959684 scopus 로고    scopus 로고
    • An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH)
    • Crocetti G., Murto M., Björnsson L. An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). J. Microbiol. Methods 2006, 65(1):194-201.
    • (2006) J. Microbiol. Methods , vol.65 , Issue.1 , pp. 194-201
    • Crocetti, G.1    Murto, M.2    Björnsson, L.3
  • 4
    • 84903692745 scopus 로고    scopus 로고
    • Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
    • Cruz Viggi C., Rossetti S., Fazi S., Paiano P., Majone M., Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 2014, 48(13):7536-7543.
    • (2014) Environ. Sci. Technol. , vol.48 , Issue.13 , pp. 7536-7543
    • Cruz Viggi, C.1    Rossetti, S.2    Fazi, S.3    Paiano, P.4    Majone, M.5    Aulenta, F.6
  • 5
    • 0344172842 scopus 로고    scopus 로고
    • The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set
    • Daims H., Brühl A., Amann R., Schleifer K.H., Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 1999, 22(3):434-444.
    • (1999) Syst. Appl. Microbiol. , vol.22 , Issue.3 , pp. 434-444
    • Daims, H.1    Brühl, A.2    Amann, R.3    Schleifer, K.H.4    Wagner, M.5
  • 7
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • Gregory K.B., Bond D.R., Lovley D.R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 2004, 6(6):596-604.
    • (2004) Environ. Microbiol. , vol.6 , Issue.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 8
    • 51349090905 scopus 로고    scopus 로고
    • Hydrogen production using single-chamber membrane-free microbial electrolysis cells
    • Hu H., Fan Y., Liu H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res. 2008, 42:4172-4178.
    • (2008) Water Res. , vol.42 , pp. 4172-4178
    • Hu, H.1    Fan, Y.2    Liu, H.3
  • 9
    • 84856302099 scopus 로고    scopus 로고
    • Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization
    • Kobayashi T., Li Y.Y., Kubota K., Harada H., Maeda T., Yu H.Q. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Appl. Environ. Biotechnol. 2012, 93(2):847-857.
    • (2012) Appl. Environ. Biotechnol. , vol.93 , Issue.2 , pp. 847-857
    • Kobayashi, T.1    Li, Y.Y.2    Kubota, K.3    Harada, H.4    Maeda, T.5    Yu, H.Q.6
  • 12
    • 84883751983 scopus 로고    scopus 로고
    • Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system
    • Liu D., Lei L., Yang B., Yu Q., Li Z. Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system. Bioresour. Technol. 2013, 148:9-14.
    • (2013) Bioresour. Technol. , vol.148 , pp. 9-14
    • Liu, D.1    Lei, L.2    Yang, B.3    Yu, Q.4    Li, Z.5
  • 14
    • 33745225414 scopus 로고    scopus 로고
    • Bug juice: harvesting electricity with microorganisms
    • Lovley D.R. Bug juice: harvesting electricity with microorganisms. Nat. Rev. 2006, 4:497-508.
    • (2006) Nat. Rev. , vol.4 , pp. 497-508
    • Lovley, D.R.1
  • 15
    • 79953759834 scopus 로고    scopus 로고
    • Powering microbes with electricity: direct electron transfer from electrodes to microbes
    • Lovley D.R. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ. Microbiol. Rep. 2011, 3(1):27-35.
    • (2011) Environ. Microbiol. Rep. , vol.3 , Issue.1 , pp. 27-35
    • Lovley, D.R.1
  • 16
    • 84878652242 scopus 로고    scopus 로고
    • Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
    • Lovley D.R., Nevin K.P. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 2013, 24:385-390.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 385-390
    • Lovley, D.R.1    Nevin, K.P.2
  • 17
    • 84858078430 scopus 로고    scopus 로고
    • 2 production from waste activated sludge
    • 2 production from waste activated sludge. Water Res. 2012, 46:2425-2434.
    • (2012) Water Res. , vol.46 , pp. 2425-2434
    • Lu, L.1    Xing, D.2    Ren, N.3
  • 18
  • 19
    • 84860424247 scopus 로고    scopus 로고
    • Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea
    • Narihiro T., Sekiguchi Y. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microb. Biotechnol. 2011, 45(5):585-602.
    • (2011) Microb. Biotechnol. , vol.45 , Issue.5 , pp. 585-602
    • Narihiro, T.1    Sekiguchi, Y.2
  • 21
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • e00103-10
    • Nevin K.P., Woodard T.L., Franks A.E., Summers Z.M., Lovley D.R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. Am. Soc. Microbiol. 2010, 1(2):e00103-10.
    • (2010) Am. Soc. Microbiol. , vol.1 , Issue.2
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 22
    • 84866148210 scopus 로고    scopus 로고
    • Enrichment of microbial electrolysis cell (MEC) biocathodes from sediment microbial fuel cell (sMFC) bioanodes
    • Pisciotta J.M., Zaybak Z., Call D.F., Nam J.Y., Logan B.E. Enrichment of microbial electrolysis cell (MEC) biocathodes from sediment microbial fuel cell (sMFC) bioanodes. Appl. Environ. Microbiol. 2012, 78(15):5212-5219.
    • (2012) Appl. Environ. Microbiol. , vol.78 , Issue.15 , pp. 5212-5219
    • Pisciotta, J.M.1    Zaybak, Z.2    Call, D.F.3    Nam, J.Y.4    Logan, B.E.5
  • 23
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis-revisiting the electrical route for microbial production
    • Rabaey K., Rozendal R.A. Microbial electrosynthesis-revisiting the electrical route for microbial production. Appl. Ind. Microbiol. 2010, 8:706-716.
    • (2010) Appl. Ind. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 25
    • 84871408348 scopus 로고    scopus 로고
    • Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge
    • Sasaki D., Sasaki K., Watanabe A., Morita M., Matsumoto N., Igarashi Y., Ohmura N. Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresour. Technol. 2013, 129:366-373.
    • (2013) Bioresour. Technol. , vol.129 , pp. 366-373
    • Sasaki, D.1    Sasaki, K.2    Watanabe, A.3    Morita, M.4    Matsumoto, N.5    Igarashi, Y.6    Ohmura, N.7
  • 26
    • 44449129578 scopus 로고    scopus 로고
    • Review: direct and indirect electrical stimulation of microbial metabolism
    • Thrash J.C., Coates J.D. Review: direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 2008, 42(11):3921-3931.
    • (2008) Environ. Sci. Technol. , vol.42 , Issue.11 , pp. 3921-3931
    • Thrash, J.C.1    Coates, J.D.2
  • 29
    • 84872258879 scopus 로고    scopus 로고
    • Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell
    • Villano M., Scardala S., Aulenta F., Majone M. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour. Technol. 2013, 130:366-371.
    • (2013) Bioresour. Technol. , vol.130 , pp. 366-371
    • Villano, M.1    Scardala, S.2    Aulenta, F.3    Majone, M.4
  • 31
    • 84896043502 scopus 로고    scopus 로고
    • Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges
    • Zhang Y., Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res. 2014, 56:11-25.
    • (2014) Water Res. , vol.56 , pp. 11-25
    • Zhang, Y.1    Angelidaki, I.2
  • 32
    • 84899920679 scopus 로고    scopus 로고
    • Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion
    • Zhen G., Lu X., Li Y.Y., Zhao Y. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion. Appl. Energy 2014, 128:93-102.
    • (2014) Appl. Energy , vol.128 , pp. 93-102
    • Zhen, G.1    Lu, X.2    Li, Y.Y.3    Zhao, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.