메뉴 건너뛰기




Volumn 26, Issue 3, 2015, Pages 245-262

Comparison of global and mode of action-based models for aquatic toxicity

Author keywords

aquatic toxicity; linear discriminant analysis (LDA); mode of action; multiple linear regression; octanol water partition coefficient; quantitative structure activity relationship (QSAR)

Indexed keywords

COMPUTATIONAL CHEMISTRY; DISCRIMINANT ANALYSIS; FORECASTING; RISK ASSESSMENT; RISK PERCEPTION; TOXICITY;

EID: 84925209546     PISSN: 1062936X     EISSN: 1029046X     Source Type: Journal    
DOI: 10.1080/1062936X.2015.1018939     Document Type: Article
Times cited : (31)

References (49)
  • 1
    • 38849180066 scopus 로고    scopus 로고
    • Review of (quantitative) structure-activity relationships for acute aquatic toxicity
    • T.I. Netzeva, M. Pavan, and A.P. Worth, Review of (quantitative) structure-activity relationships for acute aquatic toxicity, QSAR Comb. Sci. 27 (2008), pp. 77–90.
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 77-90
    • Netzeva, T.I.1    Pavan, M.2    Worth, A.P.3
  • 2
    • 0030569257 scopus 로고    scopus 로고
    • QSARS of mutagens and carcinogens: Two case studies illustrating problems in the construction of models for noncongeneric chemicals
    • R. Benigni and A.M. Richard, QSARS of mutagens and carcinogens: Two case studies illustrating problems in the construction of models for noncongeneric chemicals, Mutat. Res.-Genet. Tox. 371 (1996), pp. 29–46.
    • (1996) Mutat. Res.-Genet. Tox. , vol.371 , pp. 29-46
    • Benigni, R.1    Richard, A.M.2
  • 3
    • 0000639465 scopus 로고    scopus 로고
    • QSAR in aquatic toxicology: A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri
    • Devillers J., (ed), Taylor & Francis, New York:
    • T.W. Schultz, G.D. Sinks, and A.P. Bearden, QSAR in aquatic toxicology: A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri, in Comparative QSAR, J. Devillers, ed., Taylor & Francis, New York, 1998, pp. 51–109.
    • (1998) Comparative QSAR , pp. 51-109
    • Schultz, T.W.1    Sinks, G.D.2    Bearden, A.P.3
  • 4
    • 0000453306 scopus 로고
    • ‘Volume fraction’ correlation for narcosis in aquatic organisms: The key role of partitioning
    • S.G. Abernethy, D. MacKay, and L.S. McCarty, ‘Volume fraction’ correlation for narcosis in aquatic organisms: The key role of partitioning, Environ. Toxicol. Chem. 7 (1988), pp. 469–481.
    • (1988) Environ. Toxicol. Chem. , vol.7 , pp. 469-481
    • Abernethy, S.G.1    MacKay, D.2    McCarty, L.S.3
  • 5
    • 0029926824 scopus 로고    scopus 로고
    • Structure-toxicity relationships for phenols to Tetrahymena pyriformis
    • M.T.D. Cronin and T.W. Schultz, Structure-toxicity relationships for phenols to Tetrahymena pyriformis, Chemosphere 32 (1996), pp. 1453–1468.
    • (1996) Chemosphere , vol.32 , pp. 1453-1468
    • Cronin, M.T.D.1    Schultz, T.W.2
  • 6
    • 0027899780 scopus 로고
    • Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity
    • O.G. Mekenyan and G.D. Veith, Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity, SAR QSAR Environ. Res. 1 (1993), pp. 335–344.
    • (1993) SAR QSAR Environ. Res. , vol.1 , pp. 335-344
    • Mekenyan, O.G.1    Veith, G.D.2
  • 7
    • 34250825348 scopus 로고    scopus 로고
    • Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow
    • H. Yuan, Y.-Y. Wang, and Y.-Y. Cheng, Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow, J. Molec. Graph. Model. 26 (2007), pp. 327–335.
    • (2007) J. Molec. Graph. Model. , vol.26 , pp. 327-335
    • Yuan, H.1    Wang, Y.-Y.2    Cheng, Y.-Y.3
  • 8
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle
    • W.F. Zheng and A. Tropsha, Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle, J. Chem. Inf. Comp. Sci. 40 (2000), pp. 185–194.
    • (2000) J. Chem. Inf. Comp. Sci. , vol.40 , pp. 185-194
    • Zheng, W.F.1    Tropsha, A.2
  • 11
    • 1842810088 scopus 로고    scopus 로고
    • An Accurate QSPR study of O–H bond dissociation energy in substituted phenols based on support vector machines
    • C.X. Xue, R.S. Zhang, H.X. Liu, X.J. Yao, M.C. Liu, Z.D. Hu, and B.T. Fan, An Accurate QSPR study of O–H bond dissociation energy in substituted phenols based on support vector machines, J. Chem. Inf. Comp. Sci. 44 (2004), pp. 669–677.
    • (2004) J. Chem. Inf. Comp. Sci. , vol.44 , pp. 669-677
    • Xue, C.X.1    Zhang, R.S.2    Liu, H.X.3    Yao, X.J.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 12
    • 0032842090 scopus 로고    scopus 로고
    • Prediction of fathead minnow acute toxicity of organic compounds from molecular structure
    • D.V. Eldred, C.L. Weikel, P.C. Jurs, and K.L.E. Kaiser, Prediction of fathead minnow acute toxicity of organic compounds from molecular structure, Chem Res. Toxicol. 12 (1999), pp. 670–678.
    • (1999) Chem Res. Toxicol. , vol.12 , pp. 670-678
    • Eldred, D.V.1    Weikel, C.L.2    Jurs, P.C.3    Kaiser, K.L.E.4
  • 13
    • 26944468691 scopus 로고    scopus 로고
    • Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow)
    • E. Papa, F. Villa, and P. Gramatica, Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow), J. Chem. Inf. Model. 45 (2005), pp. 1256–1266.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1256-1266
    • Papa, E.1    Villa, F.2    Gramatica, P.3
  • 15
    • 0242624535 scopus 로고    scopus 로고
    • Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices
    • J.F. Contrera, E.J. Matthews, and R.D. Benz, Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices, Regul. Toxicol. Pharm. 38 (2003), pp. 243–259.
    • (2003) Regul. Toxicol. Pharm. , vol.38 , pp. 243-259
    • Contrera, J.F.1    Matthews, E.J.2    Benz, R.D.3
  • 16
    • 0033151484 scopus 로고    scopus 로고
    • Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): A study based on 865 chemicals
    • K.L.E. Kaiser and S.P. Niculescu, Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): A study based on 865 chemicals, Chemosphere 38 (1999), pp. 3237–3245.
    • (1999) Chemosphere , vol.38 , pp. 3237-3245
    • Kaiser, K.L.E.1    Niculescu, S.P.2
  • 17
    • 0034774701 scopus 로고    scopus 로고
    • 50) of organic compounds tothe fathead minnow (Pimephales promelas) using a group contribution method
    • 50) of organic compounds tothe fathead minnow (Pimephales promelas) using a group contribution method, Chem Res. Toxicol. 14 (2001), pp. 1378–1385.
    • (2001) Chem Res. Toxicol. , vol.14 , pp. 1378-1385
    • Martin, T.M.1    Young, D.M.2
  • 18
    • 33847056762 scopus 로고    scopus 로고
    • A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures
    • T. Öberg, A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures, SAR QSAR Environ. Res. 18 (2007), pp. 127–139.
    • (2007) SAR QSAR Environ. Res. , vol.18 , pp. 127-139
    • Öberg, T.1
  • 19
    • 10844220775 scopus 로고    scopus 로고
    • A QSAR for baseline toxicity: Validation, domain of application, and prediction
    • T. Öberg, A QSAR for baseline toxicity: Validation, domain of application, and prediction, Chem Res. Toxicol. 17 (2004), pp. 1630–1637.
    • (2004) Chem Res. Toxicol. , vol.17 , pp. 1630-1637
    • Öberg, T.1
  • 20
    • 14644406902 scopus 로고    scopus 로고
    • Inductive QSAR descriptors. Distinguishing compounds with antibacterial activity by artificial neural networks
    • A. Cherkasov, Inductive QSAR descriptors. Distinguishing compounds with antibacterial activity by artificial neural networks, Int. J. Mol. Sci. 6 (2005), pp. 63–86.
    • (2005) Int. J. Mol. Sci. , vol.6 , pp. 63-86
    • Cherkasov, A.1
  • 21
    • 84874816198 scopus 로고    scopus 로고
    • VCCLAB, Munich:
    • Virtual Computational Chemistry Laboratory (VCCLAB), Associative Neural Network, VCCLAB, Munich, 2007; software available at http://www.vcclab.org/lab/asnn/.
    • (2007) Associative Neural Network
  • 22
    • 20444404916 scopus 로고    scopus 로고
    • Assessing the reliability of QSAR model's predictions
    • L. He and P.C. Jurs, Assessing the reliability of QSAR model's predictions, J. Mol. Graph. Model. 23 (2005), pp. 503–523.
    • (2005) J. Mol. Graph. Model. , vol.23 , pp. 503-523
    • He, L.1    Jurs, P.C.2
  • 23
    • 0019517032 scopus 로고
    • Quantitative structure-activity relationships in fish toxicity studies Part 1: Relationship for 50 industrial pollutants
    • H. Könemann, Quantitative structure-activity relationships in fish toxicity studies Part 1: Relationship for 50 industrial pollutants, Toxicology 19 (1981), pp. 209–221.
    • (1981) Toxicology , vol.19 , pp. 209-221
    • Könemann, H.1
  • 25
    • 0030981036 scopus 로고    scopus 로고
    • Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales Promelas)
    • C.L. Russom, S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales Promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967.
    • (1997) Environ. Toxicol. Chem. , vol.16 , pp. 948-967
    • Russom, C.L.1    Bradbury, S.P.2    Broderius, S.J.3    Hammermeister, D.E.4    Drummond, R.A.5
  • 26
    • 0036882521 scopus 로고    scopus 로고
    • Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    • M.T.D. Cronin, A.O. Aptula, J.C. Duffy, T.I. Netzeva, P.H. Rowe, I.V. Valkova, and T. Wayne Schultz, Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 49 (2002), pp. 1201–1221.
    • (2002) Chemosphere , vol.49 , pp. 1201-1221
    • Cronin, M.T.D.1    Aptula, A.O.2    Duffy, J.C.3    Netzeva, T.I.4    Rowe, P.H.5    Valkova, I.V.6    Wayne Schultz, T.7
  • 27
    • 84883557400 scopus 로고    scopus 로고
    • Development and validation of a quantitative structure–activity relationship for chronic narcosis to fish
    • L. Claeys, F. Iaccino, C.R. Janssen, P. Van Sprang, and F. Verdonck, Development and validation of a quantitative structure–activity relationship for chronic narcosis to fish, Environ. Toxicol. Chem. 32 (2013), pp. 2217–2225.
    • (2013) Environ. Toxicol. Chem. , vol.32 , pp. 2217-2225
    • Claeys, L.1    Iaccino, F.2    Janssen, C.R.3    Van Sprang, P.4    Verdonck, F.5
  • 28
    • 0035069685 scopus 로고    scopus 로고
    • M. Nendza and M. Müller, Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors, Quant. Struct.-Act. Rel, 19 (2000), pp. 581–598.
    • (2000) Quant. Struct.-Act. Rel , vol.19 , pp. 581-598
    • Nendza, M.1    Müller, M.2
  • 30
    • 0042362292 scopus 로고    scopus 로고
    • Stepwisediscrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay
    • G. Schüürmann, A.O. Aptula, R. Kühne, and R.-U. Ebert, Stepwisediscrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay, Chem Res. Toxicol. 16 (2003), pp. 974–987.
    • (2003) Chem Res. Toxicol. , vol.16 , pp. 974-987
    • Schüürmann, G.1    Aptula, A.O.2    Kühne, R.3    Ebert, R.-U.4
  • 31
    • 61749099319 scopus 로고    scopus 로고
    • Predicting toxic action mechanisms of phenols using AdaBoost Learner
    • B. Niu, Y. Jin, W. Lu, and G. Li, Predicting toxic action mechanisms of phenols using AdaBoost Learner, Chemom. Intell. Lab. Syst. 96 (2009), pp. 43–48.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 43-48
    • Niu, B.1    Jin, Y.2    Lu, W.3    Li, G.4
  • 32
    • 9644274036 scopus 로고    scopus 로고
    • Comparison of different classification methods applied to a mode of toxic action data set
    • S. Spycher, M. Nendza, and J. Gasteiger, Comparison of different classification methods applied to a mode of toxic action data set, QSAR Comb. Sci. 23 (2004), pp. 77–791.
    • (2004) QSAR Comb. Sci. , vol.23 , pp. 77-791
    • Spycher, S.1    Nendza, M.2    Gasteiger, J.3
  • 33
    • 33746238242 scopus 로고    scopus 로고
    • Discrimination between modes of toxic action of phenols using rule based methods
    • U. Norinder, P. Lidén, and H. Boström, Discrimination between modes of toxic action of phenols using rule based methods, Mol. Divers. 10 (2006), pp. 207–212.
    • (2006) Mol. Divers. , vol.10 , pp. 207-212
    • Norinder, U.1    Lidén, P.2    Boström, H.3
  • 34
    • 15744367392 scopus 로고    scopus 로고
    • Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks
    • X.J. Yao, A. Panaye, J.P. Doucet, H.F. Chen, R.S. Zhang, B.T. Fan, M.C. Liu, and Z.D. Hu, Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks, Anal. Chim. Acta 535 (2005), pp. 259–273.
    • (2005) Anal. Chim. Acta , vol.535 , pp. 259-273
    • Yao, X.J.1    Panaye, A.2    Doucet, J.P.3    Chen, H.F.4    Zhang, R.S.5    Fan, B.T.6    Liu, M.C.7    Hu, Z.D.8
  • 35
    • 0037151245 scopus 로고    scopus 로고
    • Predicting three narcosis mechanisms of aquatic toxicity
    • S. Ren, Predicting three narcosis mechanisms of aquatic toxicity, Toxicol. Lett. 133 (2002), pp. 127–139.
    • (2002) Toxicol. Lett. , vol.133 , pp. 127-139
    • Ren, S.1
  • 36
    • 77952663843 scopus 로고    scopus 로고
    • Support vector machine (SVM) as alternative tool to assign acute aquatic toxicity warning labels to chemicals
    • L. Michielan, L. Pireddu, M. Floris, and S. Moro, Support vector machine (SVM) as alternative tool to assign acute aquatic toxicity warning labels to chemicals, Mol. Inform. 29 (2010), pp. 51–64.
    • (2010) Mol. Inform. , vol.29 , pp. 51-64
    • Michielan, L.1    Pireddu, L.2    Floris, M.3    Moro, S.4
  • 37
    • 0031799568 scopus 로고    scopus 로고
    • A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action
    • S.C. Basak, G.D. Grunwald, G.E. Host, G.J. Niemi, and S.P. Bradbury, A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action, Environ. Toxicol. Chem. 17 (1998), pp. 1056–1064.
    • (1998) Environ. Toxicol. Chem. , vol.17 , pp. 1056-1064
    • Basak, S.C.1    Grunwald, G.D.2    Host, G.E.3    Niemi, G.J.4    Bradbury, S.P.5
  • 39
    • 13844318087 scopus 로고    scopus 로고
    • Use of structure descriptors to discriminate between modes of toxic action of phenols
    • S. Spycher, E. Pellegrini, and J. Gasteiger, Use of structure descriptors to discriminate between modes of toxic action of phenols, J. Chem. Inf. Model. 45 (2005), pp. 200–208.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 200-208
    • Spycher, S.1    Pellegrini, E.2    Gasteiger, J.3
  • 40
    • 85194976557 scopus 로고    scopus 로고
    • US EPA, Washington DC:
    • Un Environmental Protection Agency (US EPA), ASTER (Assessment Tools for the Evaluation of Risk), US EPA, Washington DC, 2012; software available at http://www.epa.gov/med/Prods_Pubs/aster.htm.
    • (2012) ASTER (Assessment Tools for the Evaluation of Risk)
  • 41
    • 84868148476 scopus 로고    scopus 로고
    • IRAC International MoA Working Group
    • Insecticide Resistance Action Committee (IRAC), IRAC MoA Classification Scheme, IRAC International MoA Working Group, 2012; software available at http://www.irac-online.org/eClassification/.
    • (2012) IRAC MoA Classification Scheme
  • 42
    • 0043132440 scopus 로고    scopus 로고
    • Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs
    • L. Eriksson, J.S. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Persp. 111 (2003), pp. 1361–1375.
    • (2003) Environ. Health Persp. , vol.111 , pp. 1361-1375
    • Eriksson, L.1    Jaworska, J.S.2    Worth, A.P.3    Cronin, M.T.D.4    McDowell, R.M.5    Gramatica, P.6
  • 46
    • 85194974267 scopus 로고    scopus 로고
    • Talete SRL, Milan, Italy:
    • Talete, Dragon Version 6, Talete SRL, Milan, Italy, 2006; software available at http://www.talete.mi.it/products/dragon_description.htm.
    • (2006) Dragon Version 6
  • 47
    • 0026785215 scopus 로고
    • Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity
    • H.J.M. Verhaar, C.J. van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491.
    • (1992) Chemosphere , vol.25 , pp. 471-491
    • Verhaar, H.J.M.1    van Leeuwen, C.J.2    Hermens, J.L.M.3
  • 48
    • 0000381930 scopus 로고    scopus 로고
    • Prediction of hydrophilic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods
    • A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski, Prediction of hydrophilic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods, J. Phys. Chem. 102 (1998), pp. 3762–3772.
    • (1998) J. Phys. Chem. , vol.102 , pp. 3762-3772
    • Ghose, A.K.1    Viswanadhan, V.N.2    Wendoloski, J.J.3
  • 49
    • 73849128409 scopus 로고    scopus 로고
    • Quantitative structure−activity relationship modeling of rat acute toxicity by oral exposure
    • H. Zhu, T.M. Martin, L. Ye, A. Sedykh, D.M. Young, and A. Tropsha, Quantitative structure−activity relationship modeling of rat acute toxicity by oral exposure, Chem Res. Toxicol. 22 (2009), pp. 1913–1921.
    • (2009) Chem Res. Toxicol. , vol.22 , pp. 1913-1921
    • Zhu, H.1    Martin, T.M.2    Ye, L.3    Sedykh, A.4    Young, D.M.5    Tropsha, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.