-
1
-
-
38849180066
-
Review of (quantitative) structure-activity relationships for acute aquatic toxicity
-
T.I. Netzeva, M. Pavan, and A.P. Worth, Review of (quantitative) structure-activity relationships for acute aquatic toxicity, QSAR Comb. Sci. 27 (2008), pp. 77–90.
-
(2008)
QSAR Comb. Sci.
, vol.27
, pp. 77-90
-
-
Netzeva, T.I.1
Pavan, M.2
Worth, A.P.3
-
2
-
-
0030569257
-
QSARS of mutagens and carcinogens: Two case studies illustrating problems in the construction of models for noncongeneric chemicals
-
R. Benigni and A.M. Richard, QSARS of mutagens and carcinogens: Two case studies illustrating problems in the construction of models for noncongeneric chemicals, Mutat. Res.-Genet. Tox. 371 (1996), pp. 29–46.
-
(1996)
Mutat. Res.-Genet. Tox.
, vol.371
, pp. 29-46
-
-
Benigni, R.1
Richard, A.M.2
-
3
-
-
0000639465
-
QSAR in aquatic toxicology: A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri
-
Devillers J., (ed), Taylor & Francis, New York:
-
T.W. Schultz, G.D. Sinks, and A.P. Bearden, QSAR in aquatic toxicology: A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri, in Comparative QSAR, J. Devillers, ed., Taylor & Francis, New York, 1998, pp. 51–109.
-
(1998)
Comparative QSAR
, pp. 51-109
-
-
Schultz, T.W.1
Sinks, G.D.2
Bearden, A.P.3
-
4
-
-
0000453306
-
‘Volume fraction’ correlation for narcosis in aquatic organisms: The key role of partitioning
-
S.G. Abernethy, D. MacKay, and L.S. McCarty, ‘Volume fraction’ correlation for narcosis in aquatic organisms: The key role of partitioning, Environ. Toxicol. Chem. 7 (1988), pp. 469–481.
-
(1988)
Environ. Toxicol. Chem.
, vol.7
, pp. 469-481
-
-
Abernethy, S.G.1
MacKay, D.2
McCarty, L.S.3
-
5
-
-
0029926824
-
Structure-toxicity relationships for phenols to Tetrahymena pyriformis
-
M.T.D. Cronin and T.W. Schultz, Structure-toxicity relationships for phenols to Tetrahymena pyriformis, Chemosphere 32 (1996), pp. 1453–1468.
-
(1996)
Chemosphere
, vol.32
, pp. 1453-1468
-
-
Cronin, M.T.D.1
Schultz, T.W.2
-
6
-
-
0027899780
-
Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity
-
O.G. Mekenyan and G.D. Veith, Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity, SAR QSAR Environ. Res. 1 (1993), pp. 335–344.
-
(1993)
SAR QSAR Environ. Res.
, vol.1
, pp. 335-344
-
-
Mekenyan, O.G.1
Veith, G.D.2
-
7
-
-
34250825348
-
Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow
-
H. Yuan, Y.-Y. Wang, and Y.-Y. Cheng, Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow, J. Molec. Graph. Model. 26 (2007), pp. 327–335.
-
(2007)
J. Molec. Graph. Model.
, vol.26
, pp. 327-335
-
-
Yuan, H.1
Wang, Y.-Y.2
Cheng, Y.-Y.3
-
8
-
-
0000378338
-
Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle
-
W.F. Zheng and A. Tropsha, Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle, J. Chem. Inf. Comp. Sci. 40 (2000), pp. 185–194.
-
(2000)
J. Chem. Inf. Comp. Sci.
, vol.40
, pp. 185-194
-
-
Zheng, W.F.1
Tropsha, A.2
-
9
-
-
84900527515
-
Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method
-
M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I.V. Tetko, and R. Todeschini, Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method, Altern. Lab. Anim. 42 (2014), pp. 31–41.
-
(2014)
Altern. Lab. Anim.
, vol.42
, pp. 31-41
-
-
Cassotti, M.1
Ballabio, D.2
Consonni, V.3
Mauri, A.4
Tetko, I.V.5
Todeschini, R.6
-
10
-
-
40949091975
-
A hierarchical clustering methodology for the estimation of toxicity
-
T.M. Martin, P. Harten, R. Venkatapathy, S. Das, and D.M. Young, A hierarchical clustering methodology for the estimation of toxicity, Toxicol. Mech. Method. 18 (2008), pp. 251–266.
-
(2008)
Toxicol. Mech. Method.
, vol.18
, pp. 251-266
-
-
Martin, T.M.1
Harten, P.2
Venkatapathy, R.3
Das, S.4
Young, D.M.5
-
11
-
-
1842810088
-
An Accurate QSPR study of O–H bond dissociation energy in substituted phenols based on support vector machines
-
C.X. Xue, R.S. Zhang, H.X. Liu, X.J. Yao, M.C. Liu, Z.D. Hu, and B.T. Fan, An Accurate QSPR study of O–H bond dissociation energy in substituted phenols based on support vector machines, J. Chem. Inf. Comp. Sci. 44 (2004), pp. 669–677.
-
(2004)
J. Chem. Inf. Comp. Sci.
, vol.44
, pp. 669-677
-
-
Xue, C.X.1
Zhang, R.S.2
Liu, H.X.3
Yao, X.J.4
Liu, M.C.5
Hu, Z.D.6
Fan, B.T.7
-
12
-
-
0032842090
-
Prediction of fathead minnow acute toxicity of organic compounds from molecular structure
-
D.V. Eldred, C.L. Weikel, P.C. Jurs, and K.L.E. Kaiser, Prediction of fathead minnow acute toxicity of organic compounds from molecular structure, Chem Res. Toxicol. 12 (1999), pp. 670–678.
-
(1999)
Chem Res. Toxicol.
, vol.12
, pp. 670-678
-
-
Eldred, D.V.1
Weikel, C.L.2
Jurs, P.C.3
Kaiser, K.L.E.4
-
13
-
-
26944468691
-
Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow)
-
E. Papa, F. Villa, and P. Gramatica, Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow), J. Chem. Inf. Model. 45 (2005), pp. 1256–1266.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 1256-1266
-
-
Papa, E.1
Villa, F.2
Gramatica, P.3
-
14
-
-
50049105424
-
A novel approach to predict aquatic toxicity from molecular structure
-
J.A. Castillo-Garit, Y. Marrero-Ponce, J. Escobar, F. Torrens, and R. Rotondo, A novel approach to predict aquatic toxicity from molecular structure, Chemosphere 73 (2008), pp. 415–427.
-
(2008)
Chemosphere
, vol.73
, pp. 415-427
-
-
Castillo-Garit, J.A.1
Marrero-Ponce, Y.2
Escobar, J.3
Torrens, F.4
Rotondo, R.5
-
15
-
-
0242624535
-
Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices
-
J.F. Contrera, E.J. Matthews, and R.D. Benz, Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices, Regul. Toxicol. Pharm. 38 (2003), pp. 243–259.
-
(2003)
Regul. Toxicol. Pharm.
, vol.38
, pp. 243-259
-
-
Contrera, J.F.1
Matthews, E.J.2
Benz, R.D.3
-
16
-
-
0033151484
-
Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): A study based on 865 chemicals
-
K.L.E. Kaiser and S.P. Niculescu, Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): A study based on 865 chemicals, Chemosphere 38 (1999), pp. 3237–3245.
-
(1999)
Chemosphere
, vol.38
, pp. 3237-3245
-
-
Kaiser, K.L.E.1
Niculescu, S.P.2
-
17
-
-
0034774701
-
50) of organic compounds tothe fathead minnow (Pimephales promelas) using a group contribution method
-
50) of organic compounds tothe fathead minnow (Pimephales promelas) using a group contribution method, Chem Res. Toxicol. 14 (2001), pp. 1378–1385.
-
(2001)
Chem Res. Toxicol.
, vol.14
, pp. 1378-1385
-
-
Martin, T.M.1
Young, D.M.2
-
18
-
-
33847056762
-
A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures
-
T. Öberg, A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures, SAR QSAR Environ. Res. 18 (2007), pp. 127–139.
-
(2007)
SAR QSAR Environ. Res.
, vol.18
, pp. 127-139
-
-
Öberg, T.1
-
19
-
-
10844220775
-
A QSAR for baseline toxicity: Validation, domain of application, and prediction
-
T. Öberg, A QSAR for baseline toxicity: Validation, domain of application, and prediction, Chem Res. Toxicol. 17 (2004), pp. 1630–1637.
-
(2004)
Chem Res. Toxicol.
, vol.17
, pp. 1630-1637
-
-
Öberg, T.1
-
20
-
-
14644406902
-
Inductive QSAR descriptors. Distinguishing compounds with antibacterial activity by artificial neural networks
-
A. Cherkasov, Inductive QSAR descriptors. Distinguishing compounds with antibacterial activity by artificial neural networks, Int. J. Mol. Sci. 6 (2005), pp. 63–86.
-
(2005)
Int. J. Mol. Sci.
, vol.6
, pp. 63-86
-
-
Cherkasov, A.1
-
21
-
-
84874816198
-
-
VCCLAB, Munich:
-
Virtual Computational Chemistry Laboratory (VCCLAB), Associative Neural Network, VCCLAB, Munich, 2007; software available at http://www.vcclab.org/lab/asnn/.
-
(2007)
Associative Neural Network
-
-
-
22
-
-
20444404916
-
Assessing the reliability of QSAR model's predictions
-
L. He and P.C. Jurs, Assessing the reliability of QSAR model's predictions, J. Mol. Graph. Model. 23 (2005), pp. 503–523.
-
(2005)
J. Mol. Graph. Model.
, vol.23
, pp. 503-523
-
-
He, L.1
Jurs, P.C.2
-
23
-
-
0019517032
-
Quantitative structure-activity relationships in fish toxicity studies Part 1: Relationship for 50 industrial pollutants
-
H. Könemann, Quantitative structure-activity relationships in fish toxicity studies Part 1: Relationship for 50 industrial pollutants, Toxicology 19 (1981), pp. 209–221.
-
(1981)
Toxicology
, vol.19
, pp. 209-221
-
-
Könemann, H.1
-
25
-
-
0030981036
-
Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales Promelas)
-
C.L. Russom, S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales Promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967.
-
(1997)
Environ. Toxicol. Chem.
, vol.16
, pp. 948-967
-
-
Russom, C.L.1
Bradbury, S.P.2
Broderius, S.J.3
Hammermeister, D.E.4
Drummond, R.A.5
-
26
-
-
0036882521
-
Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis
-
M.T.D. Cronin, A.O. Aptula, J.C. Duffy, T.I. Netzeva, P.H. Rowe, I.V. Valkova, and T. Wayne Schultz, Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 49 (2002), pp. 1201–1221.
-
(2002)
Chemosphere
, vol.49
, pp. 1201-1221
-
-
Cronin, M.T.D.1
Aptula, A.O.2
Duffy, J.C.3
Netzeva, T.I.4
Rowe, P.H.5
Valkova, I.V.6
Wayne Schultz, T.7
-
27
-
-
84883557400
-
Development and validation of a quantitative structure–activity relationship for chronic narcosis to fish
-
L. Claeys, F. Iaccino, C.R. Janssen, P. Van Sprang, and F. Verdonck, Development and validation of a quantitative structure–activity relationship for chronic narcosis to fish, Environ. Toxicol. Chem. 32 (2013), pp. 2217–2225.
-
(2013)
Environ. Toxicol. Chem.
, vol.32
, pp. 2217-2225
-
-
Claeys, L.1
Iaccino, F.2
Janssen, C.R.3
Van Sprang, P.4
Verdonck, F.5
-
28
-
-
0035069685
-
-
M. Nendza and M. Müller, Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors, Quant. Struct.-Act. Rel, 19 (2000), pp. 581–598.
-
(2000)
Quant. Struct.-Act. Rel
, vol.19
, pp. 581-598
-
-
Nendza, M.1
Müller, M.2
-
29
-
-
0036270871
-
-
A.O. Aptula, T.I. Netzeva, I.V. Valkova, M.T.D. Cronin, T.W. Schultz, R. Kühne, and G. Schüürmann, Multivariate discrimination between modes of toxic action of phenols, Quant. Struct.-Act. Rel, 21 (2002), pp. 12–22.
-
(2002)
Quant. Struct.-Act. Rel
, vol.21
, pp. 12-22
-
-
Aptula, A.O.1
Netzeva, T.I.2
Valkova, I.V.3
Cronin, M.T.D.4
Schultz, T.W.5
Kühne, R.6
Schüürmann, G.7
-
30
-
-
0042362292
-
Stepwisediscrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay
-
G. Schüürmann, A.O. Aptula, R. Kühne, and R.-U. Ebert, Stepwisediscrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay, Chem Res. Toxicol. 16 (2003), pp. 974–987.
-
(2003)
Chem Res. Toxicol.
, vol.16
, pp. 974-987
-
-
Schüürmann, G.1
Aptula, A.O.2
Kühne, R.3
Ebert, R.-U.4
-
31
-
-
61749099319
-
Predicting toxic action mechanisms of phenols using AdaBoost Learner
-
B. Niu, Y. Jin, W. Lu, and G. Li, Predicting toxic action mechanisms of phenols using AdaBoost Learner, Chemom. Intell. Lab. Syst. 96 (2009), pp. 43–48.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.96
, pp. 43-48
-
-
Niu, B.1
Jin, Y.2
Lu, W.3
Li, G.4
-
32
-
-
9644274036
-
Comparison of different classification methods applied to a mode of toxic action data set
-
S. Spycher, M. Nendza, and J. Gasteiger, Comparison of different classification methods applied to a mode of toxic action data set, QSAR Comb. Sci. 23 (2004), pp. 77–791.
-
(2004)
QSAR Comb. Sci.
, vol.23
, pp. 77-791
-
-
Spycher, S.1
Nendza, M.2
Gasteiger, J.3
-
33
-
-
33746238242
-
Discrimination between modes of toxic action of phenols using rule based methods
-
U. Norinder, P. Lidén, and H. Boström, Discrimination between modes of toxic action of phenols using rule based methods, Mol. Divers. 10 (2006), pp. 207–212.
-
(2006)
Mol. Divers.
, vol.10
, pp. 207-212
-
-
Norinder, U.1
Lidén, P.2
Boström, H.3
-
34
-
-
15744367392
-
Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks
-
X.J. Yao, A. Panaye, J.P. Doucet, H.F. Chen, R.S. Zhang, B.T. Fan, M.C. Liu, and Z.D. Hu, Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks, Anal. Chim. Acta 535 (2005), pp. 259–273.
-
(2005)
Anal. Chim. Acta
, vol.535
, pp. 259-273
-
-
Yao, X.J.1
Panaye, A.2
Doucet, J.P.3
Chen, H.F.4
Zhang, R.S.5
Fan, B.T.6
Liu, M.C.7
Hu, Z.D.8
-
35
-
-
0037151245
-
Predicting three narcosis mechanisms of aquatic toxicity
-
S. Ren, Predicting three narcosis mechanisms of aquatic toxicity, Toxicol. Lett. 133 (2002), pp. 127–139.
-
(2002)
Toxicol. Lett.
, vol.133
, pp. 127-139
-
-
Ren, S.1
-
36
-
-
77952663843
-
Support vector machine (SVM) as alternative tool to assign acute aquatic toxicity warning labels to chemicals
-
L. Michielan, L. Pireddu, M. Floris, and S. Moro, Support vector machine (SVM) as alternative tool to assign acute aquatic toxicity warning labels to chemicals, Mol. Inform. 29 (2010), pp. 51–64.
-
(2010)
Mol. Inform.
, vol.29
, pp. 51-64
-
-
Michielan, L.1
Pireddu, L.2
Floris, M.3
Moro, S.4
-
37
-
-
0031799568
-
A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action
-
S.C. Basak, G.D. Grunwald, G.E. Host, G.J. Niemi, and S.P. Bradbury, A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action, Environ. Toxicol. Chem. 17 (1998), pp. 1056–1064.
-
(1998)
Environ. Toxicol. Chem.
, vol.17
, pp. 1056-1064
-
-
Basak, S.C.1
Grunwald, G.D.2
Host, G.E.3
Niemi, G.J.4
Bradbury, S.P.5
-
38
-
-
84884540256
-
Prediction of aquatic toxicity mode of action using linear discriminant and random forest models
-
T.M. Martin, C.M. Grulke, D.M. Young, C.L. Russom, N.Y. Wang, C.R. Jackson, and M.G. Barron, Prediction of aquatic toxicity mode of action using linear discriminant and random forest models, J. Chem. Inf. Model. 53 (2013), pp. 2229–2239.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2229-2239
-
-
Martin, T.M.1
Grulke, C.M.2
Young, D.M.3
Russom, C.L.4
Wang, N.Y.5
Jackson, C.R.6
Barron, M.G.7
-
39
-
-
13844318087
-
Use of structure descriptors to discriminate between modes of toxic action of phenols
-
S. Spycher, E. Pellegrini, and J. Gasteiger, Use of structure descriptors to discriminate between modes of toxic action of phenols, J. Chem. Inf. Model. 45 (2005), pp. 200–208.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 200-208
-
-
Spycher, S.1
Pellegrini, E.2
Gasteiger, J.3
-
40
-
-
85194976557
-
-
US EPA, Washington DC:
-
Un Environmental Protection Agency (US EPA), ASTER (Assessment Tools for the Evaluation of Risk), US EPA, Washington DC, 2012; software available at http://www.epa.gov/med/Prods_Pubs/aster.htm.
-
(2012)
ASTER (Assessment Tools for the Evaluation of Risk)
-
-
-
41
-
-
84868148476
-
-
IRAC International MoA Working Group
-
Insecticide Resistance Action Committee (IRAC), IRAC MoA Classification Scheme, IRAC International MoA Working Group, 2012; software available at http://www.irac-online.org/eClassification/.
-
(2012)
IRAC MoA Classification Scheme
-
-
-
42
-
-
0043132440
-
Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs
-
L. Eriksson, J.S. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Persp. 111 (2003), pp. 1361–1375.
-
(2003)
Environ. Health Persp.
, vol.111
, pp. 1361-1375
-
-
Eriksson, L.1
Jaworska, J.S.2
Worth, A.P.3
Cronin, M.T.D.4
McDowell, R.M.5
Gramatica, P.6
-
46
-
-
85194974267
-
-
Talete SRL, Milan, Italy:
-
Talete, Dragon Version 6, Talete SRL, Milan, Italy, 2006; software available at http://www.talete.mi.it/products/dragon_description.htm.
-
(2006)
Dragon Version 6
-
-
-
47
-
-
0026785215
-
Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity
-
H.J.M. Verhaar, C.J. van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491.
-
(1992)
Chemosphere
, vol.25
, pp. 471-491
-
-
Verhaar, H.J.M.1
van Leeuwen, C.J.2
Hermens, J.L.M.3
-
48
-
-
0000381930
-
Prediction of hydrophilic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods
-
A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski, Prediction of hydrophilic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods, J. Phys. Chem. 102 (1998), pp. 3762–3772.
-
(1998)
J. Phys. Chem.
, vol.102
, pp. 3762-3772
-
-
Ghose, A.K.1
Viswanadhan, V.N.2
Wendoloski, J.J.3
-
49
-
-
73849128409
-
Quantitative structure−activity relationship modeling of rat acute toxicity by oral exposure
-
H. Zhu, T.M. Martin, L. Ye, A. Sedykh, D.M. Young, and A. Tropsha, Quantitative structure−activity relationship modeling of rat acute toxicity by oral exposure, Chem Res. Toxicol. 22 (2009), pp. 1913–1921.
-
(2009)
Chem Res. Toxicol.
, vol.22
, pp. 1913-1921
-
-
Zhu, H.1
Martin, T.M.2
Ye, L.3
Sedykh, A.4
Young, D.M.5
Tropsha, A.6
|