메뉴 건너뛰기




Volumn 94, Issue , 2015, Pages 91-99

A study and a directory of energy consumption data sets of buildings

Author keywords

Buildings energy consumption; Energy consumption data sets; Measurement; Simulation; Survey

Indexed keywords

BUILDINGS; ENERGY CONSERVATION; MEASUREMENTS; SURVEYING; SURVEYS;

EID: 84924657090     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2015.02.043     Document Type: Article
Times cited : (55)

References (85)
  • 3
    • 84890278566 scopus 로고    scopus 로고
    • A review on the basics of building energy estimation
    • N. Fumo A review on the basics of building energy estimation Renew. Sustain. Energy Rev. 31 2014 53 60
    • (2014) Renew. Sustain. Energy Rev. , vol.31 , pp. 53-60
    • Fumo, N.1
  • 4
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • H.-x. Zhao, and F. Magoulès A review on the prediction of building energy consumption Renew. Sustain. Energy Rev. 16 2012 3586 3592
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 3586-3592
    • Zhao, H.-X.1    Magoulès, F.2
  • 5
    • 84875690842 scopus 로고    scopus 로고
    • State of the art in building modelling and energy performances prediction: A review
    • A. Foucquier, S. Robert, F. Suard, L. Stéphan, and A. Jay State of the art in building modelling and energy performances prediction: A review Renew. Sustain. Energy Rev. 23 2013 272 288
    • (2013) Renew. Sustain. Energy Rev. , vol.23 , pp. 272-288
    • Foucquier, A.1    Robert, S.2    Suard, F.3    Stéphan, L.4    Jay, A.5
  • 8
    • 84881604918 scopus 로고    scopus 로고
    • A methodology for modelling energy-related human behaviour: Application to window opening behaviour in residential buildings
    • V. Fabi, R.V. Andersen, S.P. Corgnati, and B.W. Olesen A methodology for modelling energy-related human behaviour: application to window opening behaviour in residential buildings Build. Simul. 6 2013 415 427
    • (2013) Build. Simul. , vol.6 , pp. 415-427
    • Fabi, V.1    Andersen, R.V.2    Corgnati, S.P.3    Olesen, B.W.4
  • 9
    • 84860844288 scopus 로고    scopus 로고
    • Energy behaviours as promoters of energy efficiency: A 21st century review
    • M.A.R. Lopes, C.H. Antunes, and N. Martins Energy behaviours as promoters of energy efficiency: a 21st century review Renew. Sustain. Energy Rev. 16 2012 4095 4104
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 4095-4104
    • Lopes, M.A.R.1    Antunes, C.H.2    Martins, N.3
  • 12
    • 79953198933 scopus 로고    scopus 로고
    • Nonintrusive appliance load monitoring: Review and outlook
    • M. Zeifman, and K. Roth Nonintrusive appliance load monitoring: review and outlook IEEE Trans. Consumer Electron. 57 2011 76 84
    • (2011) IEEE Trans. Consumer Electron. , vol.57 , pp. 76-84
    • Zeifman, M.1    Roth, K.2
  • 14
    • 78650750765 scopus 로고    scopus 로고
    • Assessment of practices and technologies of energy saving and renewable energy sources in hotels in Crete
    • N. Zografakis, K. Gillas, A. Pollaki, M. Profylienou, F. Bounialetou, and K.P. Tsagarakis Assessment of practices and technologies of energy saving and renewable energy sources in hotels in Crete Renew. Energy 36 2010 1323 1328
    • (2010) Renew. Energy , vol.36 , pp. 1323-1328
    • Zografakis, N.1    Gillas, K.2    Pollaki, A.3    Profylienou, M.4    Bounialetou, F.5    Tsagarakis, K.P.6
  • 16
    • 84855292182 scopus 로고    scopus 로고
    • Energy models for demand forecasting - A review
    • L. Suganthi, and A.A. Samuel Energy models for demand forecasting - a review Renew. Sustain. Energy Rev. 16 2012 1223 1240
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 1223-1240
    • Suganthi, L.1    Samuel, A.A.2
  • 17
    • 37349028760 scopus 로고    scopus 로고
    • A review on buildings energy consumption information
    • L. Pérez-Lombard, J. Ortiz, and C. Pout A review on buildings energy consumption information Energy Build. 40 2008 394 398
    • (2008) Energy Build. , vol.40 , pp. 394-398
    • Pérez-Lombard, L.1    Ortiz, J.2    Pout, C.3
  • 19
    • 34250170125 scopus 로고    scopus 로고
    • Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks
    • G.K. Tso, and K.K. Yau Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks Energy 32 2007 1761 1768
    • (2007) Energy , vol.32 , pp. 1761-1768
    • Tso, G.K.1    Yau, K.K.2
  • 23
    • 67650761091 scopus 로고    scopus 로고
    • Modeling of end-use energy consumption in the residential sector: A review of modeling techniques
    • L.G. Swan, and V.I. Ugursal Modeling of end-use energy consumption in the residential sector: a review of modeling techniques Renew. Sustain. Energy Rev. 13 2009 1819 1835
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , pp. 1819-1835
    • Swan, L.G.1    Ugursal, V.I.2
  • 24
    • 0041428062 scopus 로고    scopus 로고
    • An overview of artificial intelligence-based methods for building energy systems
    • M. Krarti An overview of artificial intelligence-based methods for building energy systems J. Solar Energy Eng. 125 2003 331 342
    • (2003) J. Solar Energy Eng. , vol.125 , pp. 331-342
    • Krarti, M.1
  • 25
    • 28244486115 scopus 로고    scopus 로고
    • A review of intervention studies aimed at household energy conservation
    • W. Abrahamse, L. Steg, C. Vlek, and T. Rothengatter A review of intervention studies aimed at household energy conservation J. Environ. Psychol. 25 2005 273 291
    • (2005) J. Environ. Psychol. , vol.25 , pp. 273-291
    • Abrahamse, W.1    Steg, L.2    Vlek, C.3    Rothengatter, T.4
  • 26
    • 84924679143 scopus 로고    scopus 로고
    • Research Portfolio Online Reporting Tools (RePORT). Available from
    • Research Portfolio Online Reporting Tools (RePORT). Available from: http://exporter.nih.gov/
  • 27
    • 84924679142 scopus 로고    scopus 로고
    • RAWDAD, A Community Resource for Archiving Wireless Data At Dartmouth. Available from
    • RAWDAD, A Community Resource for Archiving Wireless Data At Dartmouth. Available from: http://crawdad.cs.dartmouth.edu/
  • 28
    • 84924679141 scopus 로고    scopus 로고
    • World Wide Protein Data Bank. Available from
    • World Wide Protein Data Bank. Available from: http://www.wwpdb.org/
  • 29
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive solar building
    • S.A. Kalogirou, and M. Bojic Artificial neural networks for the prediction of the energy consumption of a passive solar building Energy 25 2000 479 491
    • (2000) Energy , vol.25 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 30
    • 33646870136 scopus 로고    scopus 로고
    • Modeling and predicting building's energy use with artificial neural networks: Methods and results
    • S. Karatasou, M. Santamouris, and V. Geros Modeling and predicting building's energy use with artificial neural networks: methods and results Energy Build. 38 2006 949 958
    • (2006) Energy Build. , vol.38 , pp. 949-958
    • Karatasou, S.1    Santamouris, M.2    Geros, V.3
  • 31
    • 84924679140 scopus 로고    scopus 로고
    • data.gov.au. Available from
    • data.gov.au. Available from: http://data.gov.au/dataset
  • 32
    • 84924679139 scopus 로고    scopus 로고
    • International Energy Agency (IEA), Policies and Measures databases. Available from
    • International Energy Agency (IEA), Policies and Measures databases. Available from: http://www.iea.org/policiesandmeasures/
  • 33
    • 84924679138 scopus 로고    scopus 로고
    • U.S. Energy Information administration. Available from
    • U.S. Energy Information administration. Available from: http://www.eia.gov/
  • 34
    • 84924679137 scopus 로고    scopus 로고
    • enerdata. Available from
    • enerdata. Available from: http://www.enerdata.net/enerdatauk/
  • 35
    • 84870720747 scopus 로고    scopus 로고
    • Is disaggregation the holy grail of energy efficiency? the case of electricity
    • K. Carrie Armel, A. Gupta, G. Shrimali, and A. Albert Is disaggregation the holy grail of energy efficiency? The case of electricity Energy Policy 52 2013 213 234
    • (2013) Energy Policy , vol.52 , pp. 213-234
    • Carrie Armel, K.1    Gupta, A.2    Shrimali, G.3    Albert, A.4
  • 38
    • 84859094259 scopus 로고    scopus 로고
    • Disaggregation of home energy display data using probabilistic approach
    • M. Zeifman Disaggregation of home energy display data using probabilistic approach IEEE Trans. Consumer Electron. 58 2012 23 31
    • (2012) IEEE Trans. Consumer Electron. , vol.58 , pp. 23-31
    • Zeifman, M.1
  • 45
    • 77955582902 scopus 로고    scopus 로고
    • Domestic electricity use: A high-resolution energy demand model
    • I. Richardson, M. Thomson, D. Infield, and C. Clifford Domestic electricity use: a high-resolution energy demand model Energy Build. 42 2010 1878 1887
    • (2010) Energy Build. , vol.42 , pp. 1878-1887
    • Richardson, I.1    Thomson, M.2    Infield, D.3    Clifford, C.4
  • 48
    • 77956406039 scopus 로고    scopus 로고
    • Unlocking the€ 53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment
    • A. Faruqui, D. Harris, and R. Hledik Unlocking the€ 53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment Energy Policy 38 2010 6222 6231
    • (2010) Energy Policy , vol.38 , pp. 6222-6231
    • Faruqui, A.1    Harris, D.2    Hledik, R.3
  • 50
    • 84924679135 scopus 로고    scopus 로고
    • Smart∗: Optimizing Energy Consumption in Smart Homes. Available from
    • Smart∗: Optimizing Energy Consumption in Smart Homes. Available from: http://lass.cs.umass.edu/projects/smart/
  • 55
    • 84886567160 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA, Available from
    • K.L. Bache, M. UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, Available from: http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
    • M. UCI Machine Learning Repository
    • Bache, K.L.1
  • 57
    • 80755176722 scopus 로고    scopus 로고
    • Modeling and simulation of the energy use in an occupied residential building in cold climate
    • T. Olofsson, and T. Mahlia Modeling and simulation of the energy use in an occupied residential building in cold climate Appl. Energy 91 2012 432 438
    • (2012) Appl. Energy , vol.91 , pp. 432-438
    • Olofsson, T.1    Mahlia, T.2
  • 59
    • 3142575317 scopus 로고    scopus 로고
    • Effect of length of measurement period on accuracy of predicted annual heating energy consumption of buildings
    • S.-H. Cho, W.-T. Kim, C.-S. Tae, and M. Zaheeruddin Effect of length of measurement period on accuracy of predicted annual heating energy consumption of buildings Energy Convers. Manage. 45 2004 2867 2878
    • (2004) Energy Convers. Manage. , vol.45 , pp. 2867-2878
    • Cho, S.-H.1    Kim, W.-T.2    Tae, C.-S.3    Zaheeruddin, M.4
  • 61
    • 84874570159 scopus 로고    scopus 로고
    • Household electricity survey: A study of domestic electrical product usage
    • J.-P. Zimmermann, M. Evans, J. Griggs, N. King, L. Harding, P. Roberts, et al. Intertek Testing & Certification Ltd
    • J.-P. Zimmermann, M. Evans, J. Griggs, N. King, L. Harding, P. Roberts, et al., "Household Electricity Survey: A study of domestic electrical product usage," Intertek Testing & Certification Ltd, Technical Report R66141, 2012.
    • (2012) Technical Report R66141
  • 64
    • 84924679132 scopus 로고    scopus 로고
    • Household Energy Consumption Survey, Australia: Summary of Results, 2012. Available from
    • Household Energy Consumption Survey, Australia: Summary of Results, 2012. Available from: http://www.abs.gov.au/AUSSTATS/abs.nsf/Lookup/4670.0Main+Features12012?OpenDocument
  • 65
    • 34250898707 scopus 로고    scopus 로고
    • An energy benchmarking model based on artificial neural network method utilizing US Commercial Buildings Energy Consumption Survey (CBECS) database
    • M. Yalcintas, and U. Aytun Ozturk An energy benchmarking model based on artificial neural network method utilizing US Commercial Buildings Energy Consumption Survey (CBECS) database Int. J. Energy Res. 31 2007 412 421
    • (2007) Int. J. Energy Res. , vol.31 , pp. 412-421
    • Yalcintas, M.1    Aytun Ozturk, U.2
  • 66
    • 22144479363 scopus 로고    scopus 로고
    • Household electricity demand, revisited
    • P.C. Reiss, and M.W. White Household electricity demand, revisited Rev. Econ. Stud. 72 2005 853 883
    • (2005) Rev. Econ. Stud. , vol.72 , pp. 853-883
    • Reiss, P.C.1    White, M.W.2
  • 67
    • 84924679131 scopus 로고    scopus 로고
    • Survey Of Household Energy Use. Available from
    • Survey Of Household Energy Use. Available from: http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=4403
  • 68
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • M. Aydinalp-Koksal, and V.I. Ugursal Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector Appl. Energy 85 2008 271 296
    • (2008) Appl. Energy , vol.85 , pp. 271-296
    • Aydinalp-Koksal, M.1    Ugursal, V.I.2
  • 69
    • 0032181722 scopus 로고    scopus 로고
    • A residential end-use energy consumption model for Canada
    • H. Farahbakhsh, V.I. Ugursal, and A.S. Fung A residential end-use energy consumption model for Canada Int. J. Energy Res. 22 1998 1133 1143
    • (1998) Int. J. Energy Res. , vol.22 , pp. 1133-1143
    • Farahbakhsh, H.1    Ugursal, V.I.2    Fung, A.S.3
  • 70
    • 0036469966 scopus 로고    scopus 로고
    • Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks
    • M. Aydinalp, V. Ismet Ugursal, and A.S. Fung Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks Appl. Energy 71 2002 87 110
    • (2002) Appl. Energy , vol.71 , pp. 87-110
    • Aydinalp, M.1    Ismet Ugursal, V.2    Fung, A.S.3
  • 71
    • 67349088412 scopus 로고    scopus 로고
    • Constructing load profiles for household electricity and hot water from time-use data - Modelling approach and validation
    • J. Widén, M. Lundh, I. Vassileva, E. Dahlquist, K. Ellegård, and E. Wäckelgård Constructing load profiles for household electricity and hot water from time-use data - modelling approach and validation Energy Build. 41 2009 753 768
    • (2009) Energy Build. , vol.41 , pp. 753-768
    • Widén, J.1    Lundh, M.2    Vassileva, I.3    Dahlquist, E.4    Ellegård, K.5    Wäckelgård, E.6
  • 72
    • 84924679130 scopus 로고    scopus 로고
    • Available from
    • Available from: http://www.enyckeln.se/
  • 73
    • 84924679129 scopus 로고    scopus 로고
    • Residential Energy Consumption Survey. Available from
    • Residential Energy Consumption Survey. Available from: http://www.eia.gov/consumption/residential/reports/2009/methodology-end-use.cfm
  • 74
    • 84924679128 scopus 로고    scopus 로고
    • Commercial Building Energy Consumption Survey. Available from
    • Commercial Building Energy Consumption Survey. Available from: http://www.eia.gov/consumption/commercial/
  • 75
    • 36549076471 scopus 로고    scopus 로고
    • Contrasting the capabilities of building energy performance simulation programs
    • D.B. Crawley, J.W. Hand, M. Kummert, and B.T. Griffith Contrasting the capabilities of building energy performance simulation programs Build. Environ. 43 2008 661 673
    • (2008) Build. Environ. , vol.43 , pp. 661-673
    • Crawley, D.B.1    Hand, J.W.2    Kummert, M.3    Griffith, B.T.4
  • 76
    • 84924679127 scopus 로고    scopus 로고
    • DOE2. Available from
    • DOE2. Available from: http://www.doe2.com/
  • 78
    • 84924679126 scopus 로고    scopus 로고
    • EnergyPlus. Available from
    • EnergyPlus. Available from: http://apps1.eere.energy.gov/buildings/energyplus/energyplus-about.cfm
  • 79
    • 84924679125 scopus 로고    scopus 로고
    • ESP-r. Available from
    • ESP-r. Available from: http://www.esru.strath.ac.uk/Programs/ESP-r.htm
  • 80
    • 84924679124 scopus 로고    scopus 로고
    • Building Energy Software Tools Directory. U.S. Department of Energy. Available from
    • Building Energy Software Tools Directory. U.S. Department of Energy. Available from: http://apps1.eere.energy.gov/buildings/tools-directory/
  • 81
    • 1642323621 scopus 로고    scopus 로고
    • Cooling load prediction for buildings using general regression neural networks
    • A.E. Ben-Nakhi, and M.A. Mahmoud Cooling load prediction for buildings using general regression neural networks Energy Convers. Manage. 45 2004 2127 2141
    • (2004) Energy Convers. Manage. , vol.45 , pp. 2127-2141
    • Ben-Nakhi, A.E.1    Mahmoud, M.A.2
  • 82
  • 84
    • 60249090242 scopus 로고    scopus 로고
    • Prediction of building energy consumption by using artificial neural networks
    • B.B. Ekici, and U.T. Aksoy Prediction of building energy consumption by using artificial neural networks Adv. Eng. Softw. 40 2009 356 362
    • (2009) Adv. Eng. Softw. , vol.40 , pp. 356-362
    • Ekici, B.B.1    Aksoy, U.T.2
  • 85
    • 84924679123 scopus 로고    scopus 로고
    • Whole building design guide. Available from
    • Whole building design guide. Available from: http://www.wbdg.org/tools/blast.php


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.