메뉴 건너뛰기




Volumn , Issue , 2010, Pages 13-18

Building-level occupancy data to improve ARIMA-based electricity use forecasts

Author keywords

Energy forecast; Occupancy; Office buildings; Sensors

Indexed keywords

A-CARBON; BUILDING OCCUPANCY; ELECTRICAL ENERGY; ELECTRICITY USE; ENERGY FORECASTS; ENERGY USE; INDEPENDENT VARIABLES; MODEL ACCURACY; MOTION SENSORS; NETWORK ACTIVITIES; OCCUPANCY; ONTARIO , CANADA; OUTDOOR TEMPERATURE; POWER DEMANDS; PRICE SIGNALS; SMART GRID; WIRELESS SENSOR; WORK SPACE;

EID: 78650915995     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1878431.1878435     Document Type: Conference Paper
Times cited : (105)

References (15)
  • 1
    • 77649203678 scopus 로고    scopus 로고
    • Intelligent infrastructure for energy efficiency
    • February
    • N. Gershenfeld, S. Samouhos, and B. Nordman. Intelligent infrastructure for energy efficiency. Science, pages 1086-1088, February 2010.
    • (2010) Science , pp. 1086-1088
    • Gershenfeld, N.1    Samouhos, S.2    Nordman, B.3
  • 2
    • 61449163288 scopus 로고    scopus 로고
    • A grey-box model of next-day building thermal load prediction for energy-efficient control
    • December
    • Q. Zhou, S. Wang, and F. Xiao X. Xu. A grey-box model of next-day building thermal load prediction for energy-efficient control. International Journal of Energy Research, 32:1418-1431, December 2008.
    • (2008) International Journal of Energy Research , vol.32 , pp. 1418-1431
    • Zhou, Q.1    Wang, S.2    Xiao, F.3    Xu, X.4
  • 3
    • 52349093047 scopus 로고    scopus 로고
    • Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
    • A. H. Neto and F. A. S. Fiorellia. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy and Buildings, 40:2169-2176, 2008.
    • (2008) Energy and Buildings , vol.40 , pp. 2169-2176
    • Neto, A.H.1    Fiorellia, F.A.S.2
  • 4
    • 0032294586 scopus 로고    scopus 로고
    • Peak demand control in commercial buildings with target peak adjustment based on load forecasting
    • September
    • A. J. Hoffman. Peak demand control in commercial buildings with target peak adjustment based on load forecasting. In Proceedings of the 1998 IEEE International Conference on Control Applications, volume 2, pages 1292-1296, September 1998.
    • (1998) Proceedings of the 1998 IEEE International Conference on Control Applications , vol.2 , pp. 1292-1296
    • Hoffman, A.J.1
  • 5
    • 33947629096 scopus 로고    scopus 로고
    • Findings from the 2004 fully automated demand response tests in large facilities
    • Report for the PIER Demand Response Research Center
    • M. A. Piette, D. S. Watson, N. Motegi, and N. Bourassa. Findings from the 2004 fully automated demand response tests in large facilities. Technical Report LBNL Report Number 58178, 2004. Report for the PIER Demand Response Research Center.
    • (2004) Technical Report LBNL Report Number 58178
    • Piette, M.A.1    Watson, D.S.2    Motegi, N.3    Bourassa, N.4
  • 6
    • 77649210284 scopus 로고    scopus 로고
    • Demand-responsive lighting: A field study
    • G. R. Newsham and B. Birt. Demand-responsive lighting: a field study. Leukos, 6(3):203-225, 2010.
    • (2010) Leukos , vol.6 , Issue.3 , pp. 203-225
    • Newsham, G.R.1    Birt, B.2
  • 9
    • 0027269168 scopus 로고
    • Stochastic modelling of temperatures for a full-scale occupied building zone subject to natural random influences
    • D. L. Loveday and C. Craggs. Stochastic modelling of temperatures for a full-scale occupied building zone subject to natural random influences. Applied Energy, 45:295-312, 1993.
    • (1993) Applied Energy , vol.45 , pp. 295-312
    • Loveday, D.L.1    Craggs, C.2
  • 11
    • 33846068110 scopus 로고    scopus 로고
    • Seasonal autoregressive modelling of water and fuel consumptions in buildings
    • G. Lowry, F. U. Bianeyin, and N. Shah. Seasonal autoregressive modelling of water and fuel consumptions in buildings. Applied Energy, 84:542-552, 2007.
    • (2007) Applied Energy , vol.84 , pp. 542-552
    • Lowry, G.1    Bianeyin, F.U.2    Shah, N.3
  • 14
    • 0029224008 scopus 로고
    • Hourly thermal load prediction for the next 24 hours by arima, ewma, lr, and an artificial neural network
    • M. Kawashima, C. E. Dorgan, and J.W. Mitchell. Hourly thermal load prediction for the next 24 hours by arima, ewma, lr, and an artificial neural network. ASHRAE Transactions, 101(1):186-200, 1995.
    • (1995) ASHRAE Transactions , vol.101 , Issue.1 , pp. 186-200
    • Kawashima, M.1    Dorgan, C.E.2    Mitchell, J.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.