-
1
-
-
77649203678
-
Intelligent infrastructure for energy efficiency
-
February
-
N. Gershenfeld, S. Samouhos, and B. Nordman. Intelligent infrastructure for energy efficiency. Science, pages 1086-1088, February 2010.
-
(2010)
Science
, pp. 1086-1088
-
-
Gershenfeld, N.1
Samouhos, S.2
Nordman, B.3
-
2
-
-
61449163288
-
A grey-box model of next-day building thermal load prediction for energy-efficient control
-
December
-
Q. Zhou, S. Wang, and F. Xiao X. Xu. A grey-box model of next-day building thermal load prediction for energy-efficient control. International Journal of Energy Research, 32:1418-1431, December 2008.
-
(2008)
International Journal of Energy Research
, vol.32
, pp. 1418-1431
-
-
Zhou, Q.1
Wang, S.2
Xiao, F.3
Xu, X.4
-
3
-
-
52349093047
-
Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
-
A. H. Neto and F. A. S. Fiorellia. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy and Buildings, 40:2169-2176, 2008.
-
(2008)
Energy and Buildings
, vol.40
, pp. 2169-2176
-
-
Neto, A.H.1
Fiorellia, F.A.S.2
-
4
-
-
0032294586
-
Peak demand control in commercial buildings with target peak adjustment based on load forecasting
-
September
-
A. J. Hoffman. Peak demand control in commercial buildings with target peak adjustment based on load forecasting. In Proceedings of the 1998 IEEE International Conference on Control Applications, volume 2, pages 1292-1296, September 1998.
-
(1998)
Proceedings of the 1998 IEEE International Conference on Control Applications
, vol.2
, pp. 1292-1296
-
-
Hoffman, A.J.1
-
5
-
-
33947629096
-
Findings from the 2004 fully automated demand response tests in large facilities
-
Report for the PIER Demand Response Research Center
-
M. A. Piette, D. S. Watson, N. Motegi, and N. Bourassa. Findings from the 2004 fully automated demand response tests in large facilities. Technical Report LBNL Report Number 58178, 2004. Report for the PIER Demand Response Research Center.
-
(2004)
Technical Report LBNL Report Number 58178
-
-
Piette, M.A.1
Watson, D.S.2
Motegi, N.3
Bourassa, N.4
-
6
-
-
77649210284
-
Demand-responsive lighting: A field study
-
G. R. Newsham and B. Birt. Demand-responsive lighting: a field study. Leukos, 6(3):203-225, 2010.
-
(2010)
Leukos
, vol.6
, Issue.3
, pp. 203-225
-
-
Newsham, G.R.1
Birt, B.2
-
9
-
-
0027269168
-
Stochastic modelling of temperatures for a full-scale occupied building zone subject to natural random influences
-
D. L. Loveday and C. Craggs. Stochastic modelling of temperatures for a full-scale occupied building zone subject to natural random influences. Applied Energy, 45:295-312, 1993.
-
(1993)
Applied Energy
, vol.45
, pp. 295-312
-
-
Loveday, D.L.1
Craggs, C.2
-
10
-
-
34147099695
-
Modelling temperature in intelligent buildings by means of autoregressive models
-
G. J. Rios-Moreno, M. Trejo-Perea, R. Castaneda-Miranda, V. M. Hernandez-Guzman, and G. Herrera-Ruiz. Modelling temperature in intelligent buildings by means of autoregressive models. Automation in Construction, 16:713-722, 2007.
-
(2007)
Automation in Construction
, vol.16
, pp. 713-722
-
-
Rios-Moreno, G.J.1
Trejo-Perea, M.2
Castaneda-Miranda, R.3
Hernandez-Guzman, V.M.4
Herrera-Ruiz, G.5
-
11
-
-
33846068110
-
Seasonal autoregressive modelling of water and fuel consumptions in buildings
-
G. Lowry, F. U. Bianeyin, and N. Shah. Seasonal autoregressive modelling of water and fuel consumptions in buildings. Applied Energy, 84:542-552, 2007.
-
(2007)
Applied Energy
, vol.84
, pp. 542-552
-
-
Lowry, G.1
Bianeyin, F.U.2
Shah, N.3
-
12
-
-
0029493123
-
On-line prediction for load profile of an air-conditioning system
-
A. Kimabra, S. Kuroso, R. Endo, K. Kamimura, T. Matsuba, and A. Yamada. On-line prediction for load profile of an air-conditioning system. ASHRAE Transactions, 101(2):198-207, 1995.
-
(1995)
ASHRAE Transactions
, vol.101
, Issue.2
, pp. 198-207
-
-
Kimabra, A.1
Kuroso, S.2
Endo, R.3
Kamimura, K.4
Matsuba, T.5
Yamada, A.6
-
14
-
-
0029224008
-
Hourly thermal load prediction for the next 24 hours by arima, ewma, lr, and an artificial neural network
-
M. Kawashima, C. E. Dorgan, and J.W. Mitchell. Hourly thermal load prediction for the next 24 hours by arima, ewma, lr, and an artificial neural network. ASHRAE Transactions, 101(1):186-200, 1995.
-
(1995)
ASHRAE Transactions
, vol.101
, Issue.1
, pp. 186-200
-
-
Kawashima, M.1
Dorgan, C.E.2
Mitchell, J.W.3
|