메뉴 건너뛰기




Volumn 31, Issue 4, 2007, Pages 412-421

An energy benchmarking model based on artificial neural network method utilizing US Commercial Buildings Energy Consumption Survey (CBECS) database

Author keywords

Artificial neural network; Commercial buildings; Energy; Model

Indexed keywords

BENCHMARKING; BUILDINGS; CORRELATION METHODS; DATABASE SYSTEMS; LINEAR REGRESSION; MATHEMATICAL MODELS; MEAN SQUARE ERROR; NEURAL NETWORKS;

EID: 34250898707     PISSN: 0363907X     EISSN: 1099114X     Source Type: Journal    
DOI: 10.1002/er.1232     Document Type: Article
Times cited : (85)

References (11)
  • 1
    • 34250861170 scopus 로고    scopus 로고
    • CBECS Commercial Building Energy Consumption Surveys
    • CBECS (Commercial Building Energy Consumption Surveys) database website: http://www.eia.doe.gov/emeu/cbecs
    • database website
  • 2
    • 0036497459 scopus 로고    scopus 로고
    • Model-based benchmarking with applications to laboratory buildings
    • Federspiel C, Zhang Q, Arens E. 2002. Model-based benchmarking with applications to laboratory buildings. Energy and Buildings 34(3):203-214.
    • (2002) Energy and Buildings , vol.34 , Issue.3 , pp. 203-214
    • Federspiel, C.1    Zhang, Q.2    Arens, E.3
  • 4
    • 24744438428 scopus 로고    scopus 로고
    • Development of California commercial building energy benchmarking database
    • Kinney S, Piette MA. 2002. Development of California commercial building energy benchmarking database. Information and Electronic Technologies 7:109-120.
    • (2002) Information and Electronic Technologies , vol.7 , pp. 109-120
    • Kinney, S.1    Piette, M.A.2
  • 5
    • 34250857916 scopus 로고    scopus 로고
    • LEED Reference Guide. 2005. US Green Building Council.
    • LEED Reference Guide. 2005. US Green Building Council.
  • 6
    • 33751044885 scopus 로고    scopus 로고
    • Rating energy efficiency and sustainability in laboratories: Results and lessons from the Labs21 program
    • Rye Brook, New York, July 29-August 1
    • Mathew P, Sartor D, Van Geet O, Reilly S. 2003. Rating energy efficiency and sustainability in laboratories: results and lessons from the Labs21 program. Proceedings of the ACEEE 2003 Summer Study on Energy Efficiency in Buildings, vol. 4, Rye Brook, New York, July 29-August 1 2003; 321-329.
    • (2003) Proceedings of the ACEEE 2003 Summer Study on Energy Efficiency in Buildings , vol.4 , pp. 321-329
    • Mathew, P.1    Sartor, D.2    Van Geet, O.3    Reilly, S.4
  • 7
    • 34250896055 scopus 로고    scopus 로고
    • Matson N, Piette MA. 2005. Review of California and national methods for energy-performance benchmarking for commercial buildings. California Energy Commission, Public Interest Energy Research Program. LBNL No: 57364.
    • Matson N, Piette MA. 2005. Review of California and national methods for energy-performance benchmarking for commercial buildings. California Energy Commission, Public Interest Energy Research Program. LBNL No: 57364.
  • 11
    • 33751034448 scopus 로고    scopus 로고
    • An energy benchmarking model based on artificial neural network method with a case example for tropical climates
    • DOI: 10.1002/er.1212
    • Yalcintas M. 2006. An energy benchmarking model based on artificial neural network method with a case example for tropical climates. International Journal of Energy Research, DOI: 10.1002/er.1212.
    • (2006) International Journal of Energy Research
    • Yalcintas, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.