메뉴 건너뛰기




Volumn 78, Issue 1-2, 2015, Pages 7-19

Support Vector Regression Based QSPR for the Prediction of Retention Time of Peptides in Reversed-Phase Liquid Chromatography

Author keywords

Peptides; Quantitative structure property relationship; Retention time; Reversed phase liquid chromatography; Support vector machine

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BACK PROPAGATION; CHEMICAL STRUCTURE; CONTROLLED STUDY; GENETIC ALGORITHM; INTERMETHOD COMPARISON; MOLECULAR MECHANICS; PARTIAL LEAST SQUARES REGRESSION; PREDICTION; PRIORITY JOURNAL; PROTEIN ANALYSIS; PROTEIN STRUCTURE; QUANTITATIVE STRUCTURE ACTIVITY RELATION; QUANTITATIVE STRUCTURE PROPERTY RELATION; REVERSED PHASE LIQUID CHROMATOGRAPHY; SUPPORT VECTOR MACHINE;

EID: 84924342803     PISSN: 00095893     EISSN: 16121112     Source Type: Journal    
DOI: 10.1007/s10337-014-2819-1     Document Type: Article
Times cited : (13)

References (57)
  • 2
    • 31844431888 scopus 로고    scopus 로고
    • Recent advances in capillary electrophoresis and capillary electrochromatography of peptides
    • COI: 1:CAS:528:DC%2BD28XhsFWlsLY%3D
    • Kasicka V (2006) Recent advances in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis 27:142–175
    • (2006) Electrophoresis , vol.27 , pp. 142-175
    • Kasicka, V.1
  • 3
    • 84859022852 scopus 로고    scopus 로고
    • Two-dimensional protein separation by the HPLC system with a monolithic column
    • COI: 1:CAS:528:DC%2BC38XlsFOjurY%3D
    • Morisaka H, Kirino A, Kobayash K, Ueda M (2012) Two-dimensional protein separation by the HPLC system with a monolithic column. Biosci Biotechnol Biochem 76:585–588
    • (2012) Biosci Biotechnol Biochem , vol.76 , pp. 585-588
    • Morisaka, H.1    Kirino, A.2    Kobayash, K.3    Ueda, M.4
  • 4
    • 84859077812 scopus 로고    scopus 로고
    • Perfusion reversed-phase high-performance liquid chromatography for protein separation from detergent-containing solutions: an alternative to gel-based approaches
    • COI: 1:CAS:528:DC%2BC38Xls1eisb4%3D
    • Gorka J, Rohmer M, Bornemann S, Papasotiriou DG, Baeumlisberger D, Arrey TN, Bahr U, Karas M (2012) Perfusion reversed-phase high-performance liquid chromatography for protein separation from detergent-containing solutions: an alternative to gel-based approaches. Anal Biochem 424:97–107
    • (2012) Anal Biochem , vol.424 , pp. 97-107
    • Gorka, J.1    Rohmer, M.2    Bornemann, S.3    Papasotiriou, D.G.4    Baeumlisberger, D.5    Arrey, T.N.6    Bahr, U.7    Karas, M.8
  • 6
    • 20444364214 scopus 로고    scopus 로고
    • Separation of peptides from myoglobin enzymatic digests by RPLC. Influence of the mobile-phase composition and the pressure on the retention and separation
    • COI: 1:CAS:528:DC%2BD2MXjs1Kit7w%3D
    • Marchetti N, Guiochon G (2005) Separation of peptides from myoglobin enzymatic digests by RPLC. Influence of the mobile-phase composition and the pressure on the retention and separation. Anal chem 77:3425–3430
    • (2005) Anal chem , vol.77 , pp. 3425-3430
    • Marchetti, N.1    Guiochon, G.2
  • 7
    • 82955233980 scopus 로고    scopus 로고
    • Retention behavior of peptides in hydrophilic-interaction chromatography
    • COI: 1:CAS:528:DC%2BC3MXhsFSktL3F
    • Gilar M, Jaworski A (2011) Retention behavior of peptides in hydrophilic-interaction chromatography. J Chromatogr A 1218:8890–8896
    • (2011) J Chromatogr A , vol.1218 , pp. 8890-8896
    • Gilar, M.1    Jaworski, A.2
  • 8
    • 61349150487 scopus 로고    scopus 로고
    • Predictions of peptides’ retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics
    • COI: 1:CAS:528:DC%2BD1MXjt12ns74%3D
    • Baczek T, Kaliszan R (2009) Predictions of peptides’ retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Proteomics 9:835–847
    • (2009) Proteomics , vol.9 , pp. 835-847
    • Baczek, T.1    Kaliszan, R.2
  • 10
    • 74949107000 scopus 로고    scopus 로고
    • 3D structure-based protein retention prediction for ion-exchange chromatography
    • COI: 1:CAS:528:DC%2BC3cXhtlCktLo%3D
    • Dismer F, Hubbuch J (2010) 3D structure-based protein retention prediction for ion-exchange chromatography. J Chromatogr A 1217:1343–1353
    • (2010) J Chromatogr A , vol.1217 , pp. 1343-1353
    • Dismer, F.1    Hubbuch, J.2
  • 11
    • 34249723139 scopus 로고    scopus 로고
    • The evaluation of two-step multivariate adaptive regression splines for chromatographic retention prediction of peptides
    • COI: 1:CAS:528:DC%2BD2sXmtlKks7g%3D
    • Put R, Vander Heyden Y (2007) The evaluation of two-step multivariate adaptive regression splines for chromatographic retention prediction of peptides. Proteomics 7:1664–1677
    • (2007) Proteomics , vol.7 , pp. 1664-1677
    • Put, R.1    Vander Heyden, Y.2
  • 12
    • 84977804954 scopus 로고    scopus 로고
    • Puzyn T, Leszczynski J, Cronin MT (2010) Recent advances in qsar studies: methods and applications. Springer, Dordrecht
  • 13
    • 10044226347 scopus 로고    scopus 로고
    • Quantitative prediction of log k of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine
    • COI: 1:CAS:528:DC%2BD2cXntVOrtro%3D
    • Liu HX, Xue CX, Zhang RS, Yao XJ, Liu MC, Hu ZD, Fan BT (2004) Quantitative prediction of log k of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine. J Chem Inf Comput Sci 44:1979–1986
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1979-1986
    • Liu, H.X.1    Xue, C.X.2    Zhang, R.S.3    Yao, X.J.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 15
    • 33750444615 scopus 로고    scopus 로고
    • Accurate quantitative structure–property relationship model of mobilities of peptides in capillary zone electrophoresis
    • COI: 1:CAS:528:DC%2BD28XhtFaksb3P
    • Ma W, Luan F, Zhang H, Zhang X, Liu M, Hu Z, Fan B (2006) Accurate quantitative structure–property relationship model of mobilities of peptides in capillary zone electrophoresis. Analyst 131:1254–1260
    • (2006) Analyst , vol.131 , pp. 1254-1260
    • Ma, W.1    Luan, F.2    Zhang, H.3    Zhang, X.4    Liu, M.5    Hu, Z.6    Fan, B.7
  • 16
    • 33845436279 scopus 로고    scopus 로고
    • Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the escherichia coli proteome using artificial neural networks
    • COI: 1:CAS:528:DC%2BD28XhtFCqt7jN
    • Shinoda K, Sugimoto M, Yachie N, Sugiyama N, Masuda T, Robert M, Soga T, Tomita M (2006) Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the escherichia coli proteome using artificial neural networks. J Proteome Res 5:3312–3317
    • (2006) J Proteome Res , vol.5 , pp. 3312-3317
    • Shinoda, K.1    Sugimoto, M.2    Yachie, N.3    Sugiyama, N.4    Masuda, T.5    Robert, M.6    Soga, T.7    Tomita, M.8
  • 17
    • 42749090818 scopus 로고    scopus 로고
    • Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression
    • COI: 1:CAS:528:DC%2BD1cXlslGqsbY%3D
    • Du H, Wang J, Zhang X, Yao X, Hu Z (2008) Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression. Chemom Intell Lab Sys 92:92–99
    • (2008) Chemom Intell Lab Sys , vol.92 , pp. 92-99
    • Du, H.1    Wang, J.2    Zhang, X.3    Yao, X.4    Hu, Z.5
  • 18
    • 33745839886 scopus 로고    scopus 로고
    • retention prediction of peptides based on uninformative variable elimination by partial least squares
    • COI: 1:CAS:528:DC%2BD28XlsFOqtbg%3D
    • Put R, Daszykowski M, Baczek T, Vander Heyden Y (2006) retention prediction of peptides based on uninformative variable elimination by partial least squares. J Proteome Res 5:1618–1625
    • (2006) J Proteome Res , vol.5 , pp. 1618-1625
    • Put, R.1    Daszykowski, M.2    Baczek, T.3    Vander Heyden, Y.4
  • 19
    • 84977790462 scopus 로고    scopus 로고
    • Vapnik VN (1997) Statistical learning theory. Wiley, New York
  • 20
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 22
    • 35348816323 scopus 로고    scopus 로고
    • A novel QSAR model for prediction of apoptosis inducing activity of 4-aryl-4-H-chromenes based on support vector machine
    • COI: 1:CAS:528:DC%2BD2sXhtF2msL3O
    • Fatemi MH, Gharaghani S (2007) A novel QSAR model for prediction of apoptosis inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorg Med Chem 15:7746–7754
    • (2007) Bioorg Med Chem , vol.15 , pp. 7746-7754
    • Fatemi, M.H.1    Gharaghani, S.2
  • 23
    • 40149083386 scopus 로고    scopus 로고
    • Prediction of selectivity coefficients of univalent anions for anion-selective electrode using support vector machine
    • COI: 1:CAS:528:DC%2BD1cXivFOgs74%3D
    • Fatemi MH, Gharaghani S, Mohammadkhani S, Rezaie Z (2008) Prediction of selectivity coefficients of univalent anions for anion-selective electrode using support vector machine. Electrochim Acta 53:4276–4282
    • (2008) Electrochim Acta , vol.53 , pp. 4276-4282
    • Fatemi, M.H.1    Gharaghani, S.2    Mohammadkhani, S.3    Rezaie, Z.4
  • 24
    • 38749114675 scopus 로고    scopus 로고
    • Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines
    • COI: 1:CAS:528:DC%2BD1cXhtlGns7g%3D
    • Niazi A, Jameh-Bozorghi S, Nori-Shargh D (2008) Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines. J Hazard Mater 151:603–609
    • (2008) J Hazard Mater , vol.151 , pp. 603-609
    • Niazi, A.1    Jameh-Bozorghi, S.2    Nori-Shargh, D.3
  • 25
    • 43849095644 scopus 로고    scopus 로고
    • Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds
    • COI: 1:CAS:528:DC%2BD1cXmt1Oitb0%3D
    • Pan Y, Jiang JC, Wang R, Cao HY (2008) Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemomet Intell Lab Syst 92:169–178
    • (2008) Chemomet Intell Lab Syst , vol.92 , pp. 169-178
    • Pan, Y.1    Jiang, J.C.2    Wang, R.3    Cao, H.Y.4
  • 26
    • 55249100505 scopus 로고    scopus 로고
    • Quantitative structure–property relationship studies for predicting flash points of organic compounds using support vector machines
    • COI: 1:CAS:528:DC%2BD1cXhtV2rur7N
    • Pan Y, Jiang JC, Wang R, Cao HY, Zhao JB (2008) Quantitative structure–property relationship studies for predicting flash points of organic compounds using support vector machines. QSAR Comb Sci 27:1013–1019
    • (2008) QSAR Comb Sci , vol.27 , pp. 1013-1019
    • Pan, Y.1    Jiang, J.C.2    Wang, R.3    Cao, H.Y.4    Zhao, J.B.5
  • 27
    • 17444419756 scopus 로고    scopus 로고
    • Prediction of peptides retention at different HPLC conditions from multiple linear regression models
    • COI: 1:CAS:528:DC%2BD2MXhsVOqsL8%3D
    • Baczek T, Wiczling P, Marszall M, Vander Heyden Y, Kaliszan R (2005) Prediction of peptides retention at different HPLC conditions from multiple linear regression models. J Proteome Res 4:555–563
    • (2005) J Proteome Res , vol.4 , pp. 555-563
    • Baczek, T.1    Wiczling, P.2    Marszall, M.3    Vander Heyden, Y.4    Kaliszan, R.5
  • 28
    • 84977770332 scopus 로고    scopus 로고
    • Hyperchem re 4 for Windows (1995) Autodesk, Sansalito, CA
  • 29
    • 84977785828 scopus 로고    scopus 로고
    • Mopac for Windows (2009) Stewart computational chemistry
  • 30
    • 84977785206 scopus 로고    scopus 로고
    • Todeschini R, Consonni V, Pavan M, Pisani V (2001) Dragon software version 3.0, Milano, Italy
  • 31
    • 77954876357 scopus 로고    scopus 로고
    • Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves
    • COI: 1:CAS:528:DC%2BC3cXpt1ynu7g%3D
    • Zou X, Zhao J, Mao H, Shi J, Yin X, Li Y (2010) Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves. Appl Spectrosc 64:786–794
    • (2010) Appl Spectrosc , vol.64 , pp. 786-794
    • Zou, X.1    Zhao, J.2    Mao, H.3    Shi, J.4    Yin, X.5    Li, Y.6
  • 32
    • 84859224335 scopus 로고    scopus 로고
    • Feature selection method based on the adaptive genetic algorithm-kernel partial least squares for high dimensional data
    • Chen W, Dai P, Chen Y, Chen D, Jiang Z (2012) Feature selection method based on the adaptive genetic algorithm-kernel partial least squares for high dimensional data. Adv Mat Res 468:1762–1766
    • (2012) Adv Mat Res , vol.468 , pp. 1762-1766
    • Chen, W.1    Dai, P.2    Chen, Y.3    Chen, D.4    Jiang, Z.5
  • 33
    • 84858638806 scopus 로고    scopus 로고
    • Genetic algorithms-based approach for wavelength selection in spectrophotometric determination of paracetamol and chlorzoxazone in tablet preparation by partial least-squares
    • Sratthaphut L, Phechkrajang C (2012) Genetic algorithms-based approach for wavelength selection in spectrophotometric determination of paracetamol and chlorzoxazone in tablet preparation by partial least-squares. Indian J Pharm Edu Res 46:62–68
    • (2012) Indian J Pharm Edu Res , vol.46 , pp. 62-68
    • Sratthaphut, L.1    Phechkrajang, C.2
  • 34
    • 0345019845 scopus 로고    scopus 로고
    • Genetic algorithms applied to feature selection in PLS regression: how and when to use them
    • COI: 1:CAS:528:DyaK1cXkt1ektrY%3D
    • Leardi R, Gonzales AL (1998) Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemom Intell Lab Syst 41:195–207
    • (1998) Chemom Intell Lab Syst , vol.41 , pp. 195-207
    • Leardi, R.1    Gonzales, A.L.2
  • 35
    • 84872196603 scopus 로고    scopus 로고
    • Genetic algorithm based variable selection for partial least squares regression using ICOMP criterion
    • Alma OG, Bulut E (2012) Genetic algorithm based variable selection for partial least squares regression using ICOMP criterion. Asian J Math Stat 5:82–92
    • (2012) Asian J Math Stat , vol.5 , pp. 82-92
    • Alma, O.G.1    Bulut, E.2
  • 36
    • 70349900272 scopus 로고    scopus 로고
    • Estimation of physical properties of kraft paper by near infrared spectroscopy an partial least squares regression
    • COI: 1:CAS:528:DC%2BD1MXhtFyms77E
    • Samistraro G, Muniz GIB, Peralta-Zamora P, Cordeiro GA (2009) Estimation of physical properties of kraft paper by near infrared spectroscopy an partial least squares regression. Quim Nova 32:1422–1428
    • (2009) Quim Nova , vol.32 , pp. 1422-1428
    • Samistraro, G.1    Muniz, G.I.B.2    Peralta-Zamora, P.3    Cordeiro, G.A.4
  • 37
    • 85151711359 scopus 로고
    • A theoretical foundation for the PLS algorithm
    • COI: 1:CAS:528:DyaL2sXit1Kns7Y%3D
    • Lorber A, Wangen L, Kowalsky BR (1987) A theoretical foundation for the PLS algorithm. J Chemom 1:19–31
    • (1987) J Chemom , vol.1 , pp. 19-31
    • Lorber, A.1    Wangen, L.2    Kowalsky, B.R.3
  • 38
    • 77950449616 scopus 로고    scopus 로고
    • Partial least squares: a method to estimate efficient channels for the ideal observers
    • Witten JM, Park S, Myers KJ (2010) Partial least squares: a method to estimate efficient channels for the ideal observers. IEEE Trans Med Imaging 29:1050–1058
    • (2010) IEEE Trans Med Imaging , vol.29 , pp. 1050-1058
    • Witten, J.M.1    Park, S.2    Myers, K.J.3
  • 39
    • 79959258968 scopus 로고    scopus 로고
    • Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems
    • Lê Cao KA, Boitard S, Besse P (2011) Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform 12:253–260
    • (2011) BMC Bioinform , vol.12 , pp. 253-260
    • Lê Cao, K.A.1    Boitard, S.2    Besse, P.3
  • 40
    • 79953197611 scopus 로고    scopus 로고
    • Feature extraction of hyperspectral scattering image for apple mealiness based on singular value decomposition
    • Min H, Qi-bing Z (2011) Feature extraction of hyperspectral scattering image for apple mealiness based on singular value decomposition. Spectrosc Spectr Anal 31:767–770
    • (2011) Spectrosc Spectr Anal , vol.31 , pp. 767-770
    • Min, H.1    Qi-bing, Z.2
  • 41
    • 84977785838 scopus 로고    scopus 로고
    • MATLAB 7.0, The mathworks, Natick, MA, USA. http://www.mathworks.com
  • 42
    • 58149378848 scopus 로고    scopus 로고
    • Neural networks in analytical chemistry
    • COI: 1:CAS:528:DC%2BD1cXhtlGlu7bL
    • Jalali-Heravi M (2008) Neural networks in analytical chemistry. Methods Mol Biol 458:81–121
    • (2008) Methods Mol Biol , vol.458 , pp. 81-121
    • Jalali-Heravi, M.1
  • 43
    • 58149386789 scopus 로고    scopus 로고
    • Artificial neural networks in biology and chemistry—the evolution of a new analytical tool
    • COI: 1:CAS:528:DC%2BD1cXhtlGlu7bJ
    • Cartwright HM (2008) Artificial neural networks in biology and chemistry—the evolution of a new analytical tool. Methods Mol Biol 458:1–13
    • (2008) Methods Mol Biol , vol.458 , pp. 1-13
    • Cartwright, H.M.1
  • 44
    • 84977802520 scopus 로고    scopus 로고
    • Peterson KL (2007) In: Lipkowitz KB, Boyd DB (eds) Artificial neural networks and their use in chemistry. Wiley, Hoboken
  • 45
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • COI: 1:CAS:528:DC%2BD3sXns1Wmt74%3D
    • Byvatov E, Fechner U, Sadowski J, Schneider G (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 43:1882–1889
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 47
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: support vector machines for pharmaceutical data analysis
    • COI: 1:CAS:528:DC%2BD3MXotFygurg%3D
    • Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26:5–14
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 48
    • 77649185953 scopus 로고    scopus 로고
    • Support vector machines: development of QSAR models for predicting anti-HIV-1 activity of TIBO derivatives
    • COI: 1:CAS:528:DC%2BC3cXivFKjtLs%3D
    • Darnag R, Mostapha Mazouz EL, Schmitzer A, Villemin D, Jarid A, Cherqaoui D (2010) Support vector machines: development of QSAR models for predicting anti-HIV-1 activity of TIBO derivatives. Eur J Med Chem 45:1590–1597
    • (2010) Eur J Med Chem , vol.45 , pp. 1590-1597
    • Darnag, R.1    Mostapha Mazouz, E.L.2    Schmitzer, A.3    Villemin, D.4    Jarid, A.5    Cherqaoui, D.6
  • 49
    • 77958514625 scopus 로고    scopus 로고
    • 2D Quantitative structure-property relationship study of mycotoxins by multiple linear regression and support vector machine
    • COI: 1:CAS:528:DC%2BC3cXhtFSqs7fO
    • Khosrokhavar R, Ghasemi JB, Shiri F (2010) 2D Quantitative structure-property relationship study of mycotoxins by multiple linear regression and support vector machine. Int J Mol Sci 11:3052–3068
    • (2010) Int J Mol Sci , vol.11 , pp. 3052-3068
    • Khosrokhavar, R.1    Ghasemi, J.B.2    Shiri, F.3
  • 50
    • 27144489164 scopus 로고    scopus 로고
    • Tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) Tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:1–47
    • (1998) Data Min Knowl Discov , vol.2 , pp. 1-47
    • Burges, C.J.C.1
  • 51
    • 84977815295 scopus 로고    scopus 로고
    • Vapnik V (1982) Estimation of dependences based on empirical data. Springer, Berlin
  • 53
    • 84977818906 scopus 로고    scopus 로고
    • Vapnik V (1995) The nature of statistical learning theory. Springer, New York
  • 54
    • 0024715264 scopus 로고
    • Molecular identification number for substructure searches
    • COI: 1:CAS:528:DyaL1MXkslOis74%3D
    • Burden FRJ (1989) Molecular identification number for substructure searches. Chem Inf Comput Sci 29:225–227
    • (1989) Chem Inf Comput Sci , vol.29 , pp. 225-227
    • Burden, F.R.J.1
  • 55
    • 0018148771 scopus 로고
    • Topological information content of genetic molecules
    • COI: 1:CAS:528:DyaE1cXlt1Cqsrw%3D
    • Sarkar RK, Roy AB, Sarkar PK (1978) Topological information content of genetic molecules. Math Biosci 39:299–312
    • (1978) Math Biosci , vol.39 , pp. 299-312
    • Sarkar, R.K.1    Roy, A.B.2    Sarkar, P.K.3
  • 56
    • 0000960565 scopus 로고
    • The contiguity ratio and statistical mapping
    • Geary RC (1954) The contiguity ratio and statistical mapping. Incorp Statist 5:115–145
    • (1954) Incorp Statist , vol.5 , pp. 115-145
    • Geary, R.C.1
  • 57
    • 77951153794 scopus 로고    scopus 로고
    • Prediction of partition coefficient of organic compounds in ionic liquids: use of a linear solvation energy relationship with parameters calculated through a group contribution method
    • COI: 1:CAS:528:DC%2BC3cXitlSjs78%3D
    • Revelli AL, Mutelet F, Jaubert JN (2010) Prediction of partition coefficient of organic compounds in ionic liquids: use of a linear solvation energy relationship with parameters calculated through a group contribution method. Ind Eng Chem Res 49:3883–3892
    • (2010) Ind Eng Chem Res , vol.49 , pp. 3883-3892
    • Revelli, A.L.1    Mutelet, F.2    Jaubert, J.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.