메뉴 건너뛰기




Volumn 9, Issue 1, 2015, Pages

Improved band similarity-based hyperspectral imagery band selection for target detection

Author keywords

band selection; forward selection; hyperspectral image; pixels selection; similarity metric; target detection

Indexed keywords

CLUSTERING ALGORITHMS; HYPERSPECTRAL IMAGING; IMAGE ENHANCEMENT; PIXELS; REMOTE SENSING; SPECTROSCOPY; TARGET TRACKING;

EID: 84924189740     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.9.095091     Document Type: Article
Times cited : (11)

References (20)
  • 1
    • 84871736244 scopus 로고    scopus 로고
    • Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction
    • L. Zhang et al., "Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction," IEEE Trans. Geosci. Remote Sens. 51(1), 242-256 (2013).
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 242-256
    • Zhang, L.1
  • 2
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • C. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 44(6), 1575-1585 (2006).
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.1    Wang, S.2
  • 3
    • 77951298838 scopus 로고    scopus 로고
    • Visualization of hyperspectral images using bilateral filtering
    • K. Kotwal and S. Chaudhuri, "Visualization of hyperspectral images using bilateral filtering," IEEE Trans. Geosci. Remote Sens. 48(5), 2308-2316 (2010).
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2308-2316
    • Kotwal, K.1    Chaudhuri, S.2
  • 4
    • 84873103655 scopus 로고    scopus 로고
    • Hyperspectral band selection using a collaborative sparse model
    • IEEE, Munich
    • Q. Du, J. Bioucas-Dias, and A. Plaza, "Hyperspectral band selection using a collaborative sparse model," in Proc. IEEE Int. Geosci. Remote Sens. Symp., pp. 3054-3057, IEEE, Munich (2012).
    • (2012) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 3054-3057
    • Du, Q.1    Bioucas-Dias, J.2    Plaza, A.3
  • 5
    • 84859048363 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
    • K. Bernard et al., "Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach," IEEE Trans. Image Process. 21(4), 2008-2021 (2012).
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2008-2021
    • Bernard, K.1
  • 6
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • L. Shijin et al., "An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine," Knowl.-Based Syst. 24, 40-48 (2011).
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 40-48
    • Shijin, L.1
  • 7
    • 36348942491 scopus 로고    scopus 로고
    • Clustering-based hyperspectral band selection using information measures
    • A. Martinez-Uso et al., "Clustering-based hyperspectral band selection using information measures," IEEE Trans. Geosci. Remote Sens. 45(12), 4158-4171 (2007).
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 4158-4171
    • Martinez-Uso, A.1
  • 8
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett. 5(4), 564-568 (2008).
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 9
    • 57749183179 scopus 로고    scopus 로고
    • A new band selection strategy for target detection in hyperspectral images
    • Springer Berlin Heidelberg, Zagreb
    • M. Diani et al., "A new band selection strategy for target detection in hyperspectral images," in Proc. 12th Int. Conf. Knowledge-Based Intelligent Information and Engineering Systems, Vol. 3, pp. 424-431, Springer Berlin Heidelberg, Zagreb (2008).
    • (2008) Proc. 12th Int. Conf. Knowledge-Based Intelligent Information and Engineering Systems , vol.3 , pp. 424-431
    • Diani, M.1
  • 10
    • 70349194672 scopus 로고    scopus 로고
    • Band clustering and selection and decision fusion for target detection in hyperspectral imagery
    • IEEE, Taipei
    • I. ul Haq, X. Xiaojian, and A. Shahzad "Band clustering and selection and decision fusion for target detection in hyperspectral imagery," in IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 1101-1104, IEEE, Taipei (2009).
    • (2009) IEEE Int. Conf. on Acoustics, Speech and Signal Processing , pp. 1101-1104
    • Ul Haq, I.1    Xiaojian, X.2    Shahzad, A.3
  • 11
    • 80052333825 scopus 로고    scopus 로고
    • Unsupervised hyperspectral band selection using graphics processing units
    • H. Yang, Q. Du, and G. Chen, "Unsupervised hyperspectral band selection using graphics processing units," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 660-668 (2011).
    • (2011) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.4 , Issue.3 , pp. 660-668
    • Yang, H.1    Du, Q.2    Chen, G.3
  • 12
    • 79955670118 scopus 로고    scopus 로고
    • Hyperspectral target detection using regularized high-order matched filter
    • Z. Shi, S. Yang, and Z. Jiang, "Hyperspectral target detection using regularized high-order matched filter," Opt. Eng. 50(5), 057201 (2011).
    • (2011) Opt. Eng. , vol.50 , Issue.5 , pp. 057201
    • Shi, Z.1    Yang, S.2    Jiang, Z.3
  • 13
    • 33846570487 scopus 로고    scopus 로고
    • A novel geometry-based feature-selection technique for hyperspectral imagery
    • L. Wang, X. Jia, and Y. Zhang, "A novel geometry-based feature-selection technique for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett. 4(1), 171-175 (2007).
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.1 , pp. 171-175
    • Wang, L.1    Jia, X.2    Zhang, Y.3
  • 14
    • 44049102958 scopus 로고    scopus 로고
    • Hyperspectral imagery visualization using double layers
    • S. Cai, Q. Du, and R. Moorhead, "Hyperspectral imagery visualization using double layers," IEEE Trans. Geosci. Remote Sens. 45(10), 3028-3036 (2007).
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3028-3036
    • Cai, S.1    Du, Q.2    Moorhead, R.3
  • 15
    • 84878161661 scopus 로고    scopus 로고
    • Hyperspectral image processing by jointly filtering wavelet component tensor
    • T. Lin and S. Bourennane, "Hyperspectral image processing by jointly filtering wavelet component tensor," IEEE Trans. Geosci. Remote Sens., 51(6), 3529-3541 (2013).
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.6 , pp. 3529-3541
    • Lin, T.1    Bourennane, S.2
  • 17
    • 78049282268 scopus 로고    scopus 로고
    • Automated labeling of materials in hyperspectral imagery
    • B. D. Bue, E. Merenyi, and B. Csatho, "Automated labeling of materials in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 48(11), 4059-4070 (2010).
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4059-4070
    • Bue, B.D.1    Merenyi, E.2    Csatho, B.3
  • 18
    • 4644303661 scopus 로고    scopus 로고
    • New hyperspectral discrimination measure for spectral characterization
    • Y. Du et al., "New hyperspectral discrimination measure for spectral characterization," Opt. Eng. 43(8), 1777-1786 (2004).
    • (2004) Opt. Eng. , vol.43 , Issue.8 , pp. 1777-1786
    • Du, Y.1
  • 19
    • 78650930212 scopus 로고    scopus 로고
    • An efficient method for supervised hyperspectral band selection
    • H. Yang et al., "An efficient method for supervised hyperspectral band selection," IEEE Geosci. Remote Sens. Lett. 8(1), 138-142 (2011).
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 138-142
    • Yang, H.1
  • 20
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data," Proc. SPIE 3753, 266-275 (1999).
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.