메뉴 건너뛰기




Volumn 122, Issue , 2013, Pages 458-469

Smooth incomplete matrix factorization and its applications in image/video denoising

Author keywords

Discretized Laplacian smoothing; Image video denoising; Low rank matrix factorization; Missing elements

Indexed keywords

DE-NOISING; DE-NOISING ALGORITHM; LAPLACIAN SMOOTHING; LOW-RANK MATRICES; MATRIX FACTORIZATIONS; OPTIMIZATION PROBLEMS; RECONSTRUCTION ERROR; TENSOR FACTORIZATION;

EID: 84884206494     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.06.005     Document Type: Article
Times cited : (10)

References (36)
  • 1
    • 0026943737 scopus 로고
    • Shape and motion from image streams under orthography. a factorization method
    • Tomasi C., Kanade T. Shape and motion from image streams under orthography. a factorization method. Int. J. Comput. Vision 1992, 9(2):137-154.
    • (1992) Int. J. Comput. Vision , vol.9 , Issue.2 , pp. 137-154
    • Tomasi, C.1    Kanade, T.2
  • 2
    • 0028549672 scopus 로고
    • Photometric stereo under a light source with arbitrary motion
    • Hayakawa H. Photometric stereo under a light source with arbitrary motion. J. Opt. Soc. Am. A 1994, 11(11):3079-3089.
    • (1994) J. Opt. Soc. Am. A , vol.11 , Issue.11 , pp. 3079-3089
    • Hayakawa, H.1
  • 4
    • 84876737877 scopus 로고    scopus 로고
    • Low-rank representation based discriminative projection for robust feature extraction
    • Zhang N., Yang J. Low-rank representation based discriminative projection for robust feature extraction. Neurocomputing 2013, 111:13-20.
    • (2013) Neurocomputing , vol.111 , pp. 13-20
    • Zhang, N.1    Yang, J.2
  • 5
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Candès E.J., Li X., Ma Y., Wright J. Robust principal component analysis?. J. ACM 2011, 58(3):11:1-11:37.
    • (2011) J. ACM , vol.58 , Issue.3 , pp. 111-1137
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 6
    • 84874199238 scopus 로고    scopus 로고
    • Active subspace. toward scalable low-rank learning
    • Liu G., Yan S. Active subspace. toward scalable low-rank learning. Neural Comput. 2012, 24(12):3371-3394.
    • (2012) Neural Comput. , vol.24 , Issue.12 , pp. 3371-3394
    • Liu, G.1    Yan, S.2
  • 7
    • 0029373923 scopus 로고
    • Principal component analysis with missing data and its application to polyhedral object modeling
    • Shum H.-Y., Ikeuchi K., Reddy R. Principal component analysis with missing data and its application to polyhedral object modeling. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17:854-867.
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell. , vol.17 , pp. 854-867
    • Shum, H.-Y.1    Ikeuchi, K.2    Reddy, R.3
  • 8
    • 24644475872 scopus 로고    scopus 로고
    • Damped Newton algorithms for matrix factorization with missing data
    • Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • A.M. Buchanan, A.W. Fitzgibbon, Damped Newton algorithms for matrix factorization with missing data, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 316-322.
    • (2005) , vol.2 , pp. 316-322
    • Buchanan, A.M.1    Fitzgibbon, A.W.2
  • 9
    • 33745179218 scopus 로고    scopus 로고
    • Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming
    • Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • Q. Ke, T. Kanade, Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp. 592-599.
    • (2005) , pp. 592-599
    • Ke, Q.1    Kanade, T.2
  • 10
    • 51149102667 scopus 로고    scopus 로고
    • Optimization algorithms on subspaces. revisiting missing data problem in low-rank matrix
    • Chen P. Optimization algorithms on subspaces. revisiting missing data problem in low-rank matrix. Int. J. Comput. Vision 2008, 80:125-142.
    • (2008) Int. J. Comput. Vision , vol.80 , pp. 125-142
    • Chen, P.1
  • 11
    • 77956175497 scopus 로고    scopus 로고
    • Successively alternate least square for low-rank matrix factorization with bounded missing data, Comput. Vision Image Understanding
    • K. Zhao, Z. Zhang, Successively alternate least square for low-rank matrix factorization with bounded missing data, Comput. Vision Image Understanding (2010) 1084-1096.
    • (2010) , pp. 1084-1096
    • Zhao, K.1    Zhang, Z.2
  • 12
    • 33846228834 scopus 로고    scopus 로고
    • On the Wiberg algorithm for matrix factorization in the presence of missing components
    • Okatani T., Deguchi K. On the Wiberg algorithm for matrix factorization in the presence of missing components. Int. J. Comput. Vision 2007, 72(3):329-337.
    • (2007) Int. J. Comput. Vision , vol.72 , Issue.3 , pp. 329-337
    • Okatani, T.1    Deguchi, K.2
  • 13
    • 51949113107 scopus 로고    scopus 로고
    • Spectrally optimal factorization of incomplete matrices
    • Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • P. Aguiar, J. Xavier, M. Stosic, Spectrally optimal factorization of incomplete matrices, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
    • (2008) , pp. 1-8
    • Aguiar, P.1    Xavier, J.2    Stosic, M.3
  • 14
    • 42549164992 scopus 로고    scopus 로고
    • Multiframe motion segmentation with missing data using powerfactorization and GPCA
    • Vidal R., Tron R., Hartley R. Multiframe motion segmentation with missing data using powerfactorization and GPCA. Int. J. Comput. Vision 2008, 79:85-105.
    • (2008) Int. J. Comput. Vision , vol.79 , pp. 85-105
    • Vidal, R.1    Tron, R.2    Hartley, R.3
  • 16
    • 58149174065 scopus 로고    scopus 로고
    • Estimating 3d shape from degenerate sequences with missing data
    • Marques M., Costeira J. Estimating 3d shape from degenerate sequences with missing data. Comput. Vision Image Understanding 2009, 113:261-272.
    • (2009) Comput. Vision Image Understanding , vol.113 , pp. 261-272
    • Marques, M.1    Costeira, J.2
  • 17
    • 77955994778 scopus 로고    scopus 로고
    • Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm
    • Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • A. Eriksson, A. van den Hengel, Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 771-778.
    • (2010) , pp. 771-778
    • Eriksson, A.1    van den Hengel, A.2
  • 18
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incomplete matrices
    • Mazumder R., Hastie T., Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 2010, 11:2287-2322.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 84865337642 scopus 로고    scopus 로고
    • Inducible regularization for low-rank matrix factorizations for collaborative filtering
    • Zhang Z., Zhao K., Zha H. Inducible regularization for low-rank matrix factorizations for collaborative filtering. Neurocomputing 2012, 97:52-62.
    • (2012) Neurocomputing , vol.97 , pp. 52-62
    • Zhang, Z.1    Zhao, K.2    Zha, H.3
  • 20
    • 0036450595 scopus 로고    scopus 로고
    • 3d structure from video streams with partially overlapping images
    • Proceedings of the ICIP
    • R. Guerreiro, P. Aguiar, 3d structure from video streams with partially overlapping images, in: Proceedings of the ICIP, 2002, pp. 897-900.
    • (2002) , pp. 897-900
    • Guerreiro, R.1    Aguiar, P.2
  • 21
    • 0002597399 scopus 로고
    • Computation of principal components when data are missing
    • Proceedings of the Second Symposium of Computational Statistics, Berlin
    • T. Wiberg, Computation of principal components when data are missing, in: Proceedings of the Second Symposium of Computational Statistics, Berlin, 1976, pp. 229-326.
    • (1976) , pp. 229-326
    • Wiberg, T.1
  • 22
    • 84866035233 scopus 로고    scopus 로고
    • Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization, Technical Report. CAAM TR11-02, Rice University
    • Y. Shen, Z. Wen, Y. Zhang, Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization, Technical Report. CAAM TR11-02, Rice University, 2011.
    • (2011)
    • Shen, Y.1    Wen, Z.2    Zhang, Y.3
  • 23
    • 84856673250 scopus 로고    scopus 로고
    • Efficient algorithm for low-rank matrix factorization with missing components and performance comparison of latest algorithms
    • Proceedings of the ICCV
    • T. Okatani, T. Yoshida, K. Deguchi, Efficient algorithm for low-rank matrix factorization with missing components and performance comparison of latest algorithms, in: Proceedings of the ICCV, 2011, pp. 842-849.
    • (2011) , pp. 842-849
    • Okatani, T.1    Yoshida, T.2    Deguchi, K.3
  • 24
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion, SIAM J. Optim
    • J.F. Cai, E.J. Cands, Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim. (2010) 1956-1982.
    • (2010) , pp. 1956-1982
    • Cai, J.F.1    Cands, E.J.2    Shen, Z.3
  • 25
    • 77955991059 scopus 로고    scopus 로고
    • Robust video denoising using low rank matrix completion
    • 2012 IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA
    • H. Ji, C. Liu, Z. Shen, Y. Xu, Robust video denoising using low rank matrix completion, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, 2010, pp. 1791-1798.
    • (2010) , pp. 1791-1798
    • Ji, H.1    Liu, C.2    Shen, Z.3    Xu, Y.4
  • 26
    • 78049448383 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
    • Toh K.C., Yun S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim. 2010, 6:615-640.
    • (2010) Pac. J. Optim. , vol.6 , pp. 615-640
    • Toh, K.C.1    Yun, S.2
  • 27
    • 84866683891 scopus 로고    scopus 로고
    • Practical low-rank matrix approximation under robust l1-norm
    • Proceedings of the CVPR
    • Y. Zheng, G. Liu, S. Sugimoto, S. Yan, M. Okutomi, Practical low-rank matrix approximation under robust l1-norm, in: Proceedings of the CVPR, 2012, pp. 1410-1417.
    • (2012) , pp. 1410-1417
    • Zheng, Y.1    Liu, G.2    Sugimoto, S.3    Yan, S.4    Okutomi, M.5
  • 28
    • 84884204574 scopus 로고    scopus 로고
    • Discretized Laplacian smoothing by Fourier iviethods, Technical Report. No. 162, Department of Statistics, University of Washington, June 1989
    • F.O. Sullivan, Discretized Laplacian smoothing by Fourier iviethods, Technical Report. No. 162, Department of Statistics, University of Washington, June 1989.
    • Sullivan, F.O.1
  • 29
    • 35148813570 scopus 로고    scopus 로고
    • Learning a spatially smooth subspace for face recognition
    • Proceedings of the CVPR
    • D. Cai, X. He, Y. Hu, J. Han, T. Huang, Learning a spatially smooth subspace for face recognition, in: Proceedings of the CVPR, 2007, pp. 1-7.
    • (2007) , pp. 1-7
    • Cai, D.1    He, X.2    Hu, Y.3    Han, J.4    Huang, T.5
  • 32
    • 79952307213 scopus 로고    scopus 로고
    • Alternating direction algorithms for l1-problems in compressive sensing
    • Yang J., Zhang Y. Alternating direction algorithms for l1-problems in compressive sensing. SIAM J. Sci. Comput. 2011, 33(1-2):250-278.
    • (2011) SIAM J. Sci. Comput. , vol.33 , Issue.1-2 , pp. 250-278
    • Yang, J.1    Zhang, Y.2
  • 33
    • 84884211290 scopus 로고    scopus 로고
    • The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrix, Technical Report. UILU-ENG-09-2215, UIUC
    • Z. Lin, M. Chen, Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrix, Technical Report. UILU-ENG-09-2215, UIUC, 2009.
    • (2009)
    • Lin, Z.1    Chen, M.2    Ma, Y.3
  • 34
    • 33845525246 scopus 로고    scopus 로고
    • Algorithm 862. Matlab tensor classes for fast algorithm prototyping
    • Bader B.W., Kolda T.G. Algorithm 862. Matlab tensor classes for fast algorithm prototyping. ACM Trans. Math. Software 2006, 32(4):635-653.
    • (2006) ACM Trans. Math. Software , vol.32 , Issue.4 , pp. 635-653
    • Bader, B.W.1    Kolda, T.G.2
  • 35
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Proceedings of the ICCV
    • D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: Proceedings of the ICCV, 2001.
    • (2001)
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 36
    • 84884206742 scopus 로고    scopus 로고
    • 〈〉
    • 〈〉. http://media.xiph.org/video/derf/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.