메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages

Bayesian neural networks for detecting epistasis in genetic association studies

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER GRAPHICS; GENES; NEURAL NETWORKS; PROGRAM PROCESSORS;

EID: 84923857700     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-014-0368-0     Document Type: Article
Times cited : (32)

References (46)
  • 3
    • 43249108568 scopus 로고    scopus 로고
    • Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology
    • Motsinger-Reif AA, Dudek SM, Hahn LW, Ritchie MD: Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genet Epidemiol 2008, 32(4):325-340.
    • (2008) Genet Epidemiol , vol.32 , Issue.4 , pp. 325-340
    • Motsinger-Reif, A.A.1    Dudek, S.M.2    Hahn, L.W.3    Ritchie, M.D.4
  • 4
    • 84887497497 scopus 로고    scopus 로고
    • A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology
    • Koo CL, Liew MJ, Mohamad MS, Mohamed Salleh AH: A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology. Biomed Res Int 2013, 2013(Article ID 432375):13. doi:10.1155/2013/432375.
    • (2013) Biomed Res Int , vol.2013 , pp. 13
    • Koo, C.L.1    Liew, M.J.2    Mohamad, M.S.3    Mohamed Salleh, A.H.4
  • 6
    • 33745599582 scopus 로고    scopus 로고
    • A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
    • Moore JH, Gilbert JC, Tsai C, Chiang F, Holden T, Barney N, White BC: A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 2006, 241(2):252-261.
    • (2006) J Theor Biol , vol.241 , Issue.2 , pp. 252-261
    • Moore, J.H.1    Gilbert, J.C.2    Tsai, C.3    Chiang, F.4    Holden, T.5    Barney, N.6    White, B.C.7
  • 7
    • 0037433052 scopus 로고    scopus 로고
    • Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions
    • Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19(3):376-382.
    • (2003) Bioinformatics , vol.19 , Issue.3 , pp. 376-382
    • Hahn, L.W.1    Ritchie, M.D.2    Moore, J.H.3
  • 8
    • 77949614812 scopus 로고    scopus 로고
    • Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS
    • Greene CS, Sinnott-Armstrong NA, Himmelstein DS, Park PJ, Moore JH, Harris BT: Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS. Bioinformatics 2010, 26(5):694-695.
    • (2010) Bioinformatics , vol.26 , Issue.5 , pp. 694-695
    • Greene, C.S.1    Sinnott-Armstrong, N.A.2    Himmelstein, D.S.3    Park, P.J.4    Moore, J.H.5    Harris, B.T.6
  • 9
    • 34548352849 scopus 로고    scopus 로고
    • Bayesian inference of epistatic interactions in case-control studies
    • Zhang Y, Liu JS: Bayesian inference of epistatic interactions in case-control studies. Nat Genet 2007, 39(9):1167-1173.
    • (2007) Nat Genet , vol.39 , Issue.9 , pp. 1167-1173
    • Zhang, Y.1    Liu, J.S.2
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Mach Learning 2002, 46(1-3):389-422.
    • (2002) Mach Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 11
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: exploiting interactions using random forests
    • Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P: Screening large-scale association study data: exploiting interactions using random forests. BMC genetics 2004, 5(1):32.
    • (2004) BMC genetics , vol.5 , Issue.1 , pp. 32
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3    Eerdewegh, P.4
  • 12
    • 79959442576 scopus 로고    scopus 로고
    • Detecting epistatic effects in association studies at a genomic level based on an ensemble approach
    • Li J, Horstman B, Chen Y: Detecting epistatic effects in association studies at a genomic level based on an ensemble approach. Bioinformatics 2011, 27(13):222-229.
    • (2011) Bioinformatics , vol.27 , Issue.13 , pp. 222-229
    • Li, J.1    Horstman, B.2    Chen, Y.3
  • 14
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, Alvarez de Andres S: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006, 7:3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Andres, S.2
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L: Random forests. Mach Learning 2001, 45(1):5-32.
    • (2001) Mach Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine. (English summary)
    • Friedman JH: Greedy function approximation: a gradient boosting machine. (English summary). Ann. Statist 2001, 29(5):1189-1232.
    • (2001) Ann. Statist , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 17
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman JH: Stochastic gradient boosting. Comput Stat Data Anal 2002, 38(4):367-378.
    • (2002) Comput Stat Data Anal , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 18
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • Lisboa PJ, Wong H, Harris P, Swindell R: A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artif Intell Med 2003, 28(1):1-25.
    • (2003) Artif Intell Med , vol.28 , Issue.1 , pp. 1-25
    • Lisboa, P.J.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 19
    • 0036532641 scopus 로고    scopus 로고
    • Bayesian neural network learning for repeat purchase modelling in direct marketing
    • Baesens B, Viaene S, Van den Poel D, Vanthienen J, Dedene G: Bayesian neural network learning for repeat purchase modelling in direct marketing. Eur J Oper Res 2002, 138(1):191-211.
    • (2002) Eur J Oper Res , vol.138 , Issue.1 , pp. 191-211
    • Baesens, B.1    Viaene, S.2    Poel, D.3    Vanthienen, J.4    Dedene, G.5
  • 23
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57(1):97-109.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 24
    • 85057196821 scopus 로고    scopus 로고
    • MCMC for Using Hamiltonian Dynamics
    • Boca Raton, FL: Chapman & Hall/CRC
    • Neal R: MCMC for Using Hamiltonian Dynamics. In Handbook of Markov Chain Monte Carlo. Boca Raton, FL: Chapman & Hall/CRC; 2011:113-162.
    • (2011) Handbook of Markov Chain Monte Carlo , pp. 113-162
    • Neal, R.1
  • 28
    • 0033940280 scopus 로고    scopus 로고
    • A complete enumeration and classification of two-locus disease models
    • Li W, Reich J: A complete enumeration and classification of two-locus disease models. Hum Hered 2000, 50(6):334-349.
    • (2000) Hum Hered , vol.50 , Issue.6 , pp. 334-349
    • Li, W.1    Reich, J.2
  • 29
    • 2642574503 scopus 로고    scopus 로고
    • Vienna, Austria: R foundation for Statistical Computing
    • Team, RDevelopment Core and others: R: A language and environment for statistical computing. Vienna, Austria: R foundation for Statistical Computing; 2005. URL http://www.R-project.org/ .
    • (2005) A language and environment for statistical computing
  • 31
    • 79251535007 scopus 로고    scopus 로고
    • Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study
    • Oki NO, Motsinger-Reif AA, Antas PR, Levy S, Holland SM, Sterling TR: Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study. BMC Res Notes 2011, 4(1):28.
    • (2011) BMC Res Notes , vol.4 , Issue.1 , pp. 28
    • Oki, N.O.1    Motsinger-Reif, A.A.2    Antas, P.R.3    Levy, S.4    Holland, S.M.5    Sterling, T.R.6
  • 34
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H: Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 35
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams PM: Bayesian regularization and pruning using a Laplace prior. Neural Comput 1995, 7(1):117-143.
    • (1995) Neural Comput , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1
  • 36
    • 76749133333 scopus 로고    scopus 로고
    • Neural networks for genetic epidemiology: past, present, and future
    • Motsinger-Reif AA RM: Neural networks for genetic epidemiology: past, present, and future. BioData mining 2008, 1:3. doi:10.1186/1756-0381-1-3.
    • (2008) BioData mining , vol.1 , pp. 3
    • Motsinger-Reif A.A, R.M.1
  • 38
    • 0034865595 scopus 로고    scopus 로고
    • Automatic relevance Determination for Least Squares Support Vector Machine Regression
    • Proceedings. IJCNN'01. International Joint Conference on. Vol. 4. IEEE.
    • Van Gestel T, Suykens JAK, De Moor B, Vandewalle J: Automatic relevance Determination for Least Squares Support Vector Machine Regression. Neural Networks; 2001. Proceedings. IJCNN'01. International Joint Conference on. Vol. 4. IEEE.
    • (2001) Neural Networks
    • Gestel, T.1    Suykens, J.A.K.2    Moor, B.3    Vandewalle, J.4
  • 39
    • 84923912824 scopus 로고    scopus 로고
    • Proceedings of the Advances in Neural Information Processing Systems
    • Anonymous: Proceedings of the Advances in Neural Information Processing Systems; 2007.
    • (2007)
  • 44
    • 2142662996 scopus 로고    scopus 로고
    • GPU implementation of neural networks
    • Oh K, Jung K: GPU implementation of neural networks. Pattern Recognit 2004, 37(6):1311-1314.
    • (2004) Pattern Recognit , vol.37 , Issue.6 , pp. 1311-1314
    • Oh, K.1    Jung, K.2
  • 46
    • 84855873504 scopus 로고    scopus 로고
    • PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation
    • Klockner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A: PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel Computing 2012, 38(3):157-174.
    • (2012) Parallel Computing , vol.38 , Issue.3 , pp. 157-174
    • Klockner, A.1    Pinto, N.2    Lee, Y.3    Catanzaro, B.4    Ivanov, P.5    Fasih, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.