메뉴 건너뛰기




Volumn 92, Issue , 2015, Pages 322-330

Short-term load forecasting in a non-residential building contrasting models and attributes

Author keywords

Load forecasting; Measured data; Mediterranean climate; Multilayer perceptron; Neural networks; Regression; Support vector machines

Indexed keywords

BUILDINGS; ECONOMICS; FORECASTING; HOUSING; MULTILAYER NEURAL NETWORKS; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84923378659     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2015.02.007     Document Type: Article
Times cited : (187)

References (28)
  • 2
    • 33644779601 scopus 로고    scopus 로고
    • Analysis of building energy regulation and certification in Europe: Their role, limitations and differences
    • X.G. Casals Analysis of building energy regulation and certification in Europe: their role, limitations and differences Energy Build. 38 5 2006 381 392
    • (2006) Energy Build. , vol.38 , Issue.5 , pp. 381-392
    • Casals, X.G.1
  • 4
    • 80053339769 scopus 로고    scopus 로고
    • New artificial neural network prediction method for electrical consumption forecasting based on building end-uses
    • G. Escrivá-Escrivá, C. Álvarez Bel, C. Roldán-Blay, and M. Alcázar-Ortega New artificial neural network prediction method for electrical consumption forecasting based on building end-uses Energy Build. 43 11 2011 3112 3119
    • (2011) Energy Build. , vol.43 , Issue.11 , pp. 3112-3119
    • Escrivá-Escrivá, G.1    Álvarez Bel, C.2    Roldán-Blay, C.3    Alcázar-Ortega, M.4
  • 6
    • 34250092221 scopus 로고
    • Genetic algorithms and machine learning
    • D.E. Goldberg, and J.H. Holland Genetic algorithms and machine learning Mach. Learn. 3 2 1988 95 99
    • (1988) Mach. Learn. , vol.3 , Issue.2 , pp. 95-99
    • Goldberg, D.E.1    Holland, J.H.2
  • 7
    • 13844306850 scopus 로고    scopus 로고
    • Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
    • P.A. González, and J.M. Zamarre no Prediction of hourly energy consumption in buildings based on a feedback artificial neural network Energy Build. 37 6 2005 595 601
    • (2005) Energy Build. , vol.37 , Issue.6 , pp. 595-601
    • González, P.A.1    Zamarre No, J.M.2
  • 11
    • 33646870136 scopus 로고    scopus 로고
    • Modeling and predicting building's energy use with artificial neural networks: Methods and results
    • S. Karatasou, M. Santamouris, and V. Geros Modeling and predicting building's energy use with artificial neural networks: methods and results Energy Build. 38 8 2006 949 958
    • (2006) Energy Build. , vol.38 , Issue.8 , pp. 949-958
    • Karatasou, S.1    Santamouris, M.2    Geros, V.3
  • 12
    • 11144325632 scopus 로고    scopus 로고
    • Zigbee technology: Wireless control that simply works
    • P. Kinney Zigbee technology: wireless control that simply works Communications Design Conference 2003
    • (2003) Communications Design Conference
    • Kinney, P.1
  • 13
    • 79953202125 scopus 로고    scopus 로고
    • An intelligent approach to assessing the effect of building occupancy on building cooling load prediction
    • S.S.K. Kwok, R.K.K. Yuen, and E.W.M. Lee An intelligent approach to assessing the effect of building occupancy on building cooling load prediction Build. Environ. 46 8 2011 1681 1690
    • (2011) Build. Environ. , vol.46 , Issue.8 , pp. 1681-1690
    • Kwok, S.S.K.1    Yuen, R.K.K.2    Lee, E.W.M.3
  • 14
    • 74249100855 scopus 로고    scopus 로고
    • Principal component analysis and long-term building energy simulation correlation
    • J.C. Lam, K.K.W. Wan, S.L. Wong, and T.N.T. Lam Principal component analysis and long-term building energy simulation correlation Energy Convers. Manage. 51 1 2010 135 139
    • (2010) Energy Convers. Manage. , vol.51 , Issue.1 , pp. 135-139
    • Lam, J.C.1    Wan, K.K.W.2    Wong, S.L.3    Lam, T.N.T.4
  • 16
    • 77956169754 scopus 로고    scopus 로고
    • Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system
    • K. Li, and H. Su Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system Energy Build. 42 11 2010 2070 2076
    • (2010) Energy Build. , vol.42 , Issue.11 , pp. 2070-2076
    • Li, K.1    Su, H.2
  • 17
    • 80054796723 scopus 로고    scopus 로고
    • Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study
    • K. Li, H. Su, and J. Chu Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study Energy Build. 43 10 2011 2893 2899
    • (2011) Energy Build. , vol.43 , Issue.10 , pp. 2893-2899
    • Li, K.1    Su, H.2    Chu, J.3
  • 18
    • 52349093047 scopus 로고    scopus 로고
    • Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
    • A.H. Neto, and F.A. Sanzovo Fiorelli Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption Energy Build. 40 12 2008 2169 2176
    • (2008) Energy Build. , vol.40 , Issue.12 , pp. 2169-2176
    • Neto, A.H.1    Sanzovo Fiorelli, F.A.2
  • 19
    • 82955227567 scopus 로고    scopus 로고
    • Short-term load forecasting in air-conditioned non-residential buildings
    • Y.K. Penya, C.E. Borges, and I. Fernandez Short-term load forecasting in air-conditioned non-residential buildings IEEE Africon'11 2011 1 6
    • (2011) IEEE Africon'11 , pp. 1-6
    • Penya, Y.K.1    Borges, C.E.2    Fernandez, I.3
  • 22
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Schölkopf A tutorial on support vector regression Stat. Comput. 14 3 2004 199 222
    • (2004) Stat. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 23
    • 33644845063 scopus 로고    scopus 로고
    • Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
    • B. Üstün, W.J. Melssen, and L.M.C. Buydens Facilitating the application of support vector regression by using a universal Pearson VII function based kernel Chemometr. Intell. Lab. Syst. 81 1 2006 29 40
    • (2006) Chemometr. Intell. Lab. Syst. , vol.81 , Issue.1 , pp. 29-40
    • Üstün, B.1    Melssen, W.J.2    Buydens, L.M.C.3
  • 25
    • 25844500264 scopus 로고    scopus 로고
    • On-line building energy prediction using adaptive artificial neural networks
    • J. Yang, H. Rivard, and R. Zmeureanu On-line building energy prediction using adaptive artificial neural networks Energy Build. 37 12 2005 1250 1259
    • (2005) Energy Build. , vol.37 , Issue.12 , pp. 1250-1259
    • Yang, J.1    Rivard, H.2    Zmeureanu, R.3
  • 28
    • 84859087157 scopus 로고    scopus 로고
    • Feature selection for predicting building energy consumption based on statistical learning method
    • H.-x. Zhao, and F. Magoulès Feature selection for predicting building energy consumption based on statistical learning method J. Algorithms Comput. Technol. 6 1 2012 59 78
    • (2012) J. Algorithms Comput. Technol. , vol.6 , Issue.1 , pp. 59-78
    • Zhao, H.-X.1    Magoulès, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.