-
1
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004, 5:1205-1224.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
2
-
-
33745561205
-
An introduction to variable and features election
-
Guyon I., Elisseeff A. An introduction to variable and features election. J. Mach. Learn. Res. 2003, 3:1157-1182.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
3
-
-
17044405923
-
Toward integrating features election algorithms for classification and clustering
-
Liu H., Yu L. Toward integrating features election algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17(4):491-502.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
5
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
6
-
-
27644496932
-
A new dependency and correlation analysis for features
-
Qu G., Hariri S., Yousif M. A new dependency and correlation analysis for features. IEEE Trans. Knowl. Data Eng. 2005, 17(9):1199-1207.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.9
, pp. 1199-1207
-
-
Qu, G.1
Hariri, S.2
Yousif, M.3
-
7
-
-
24344458137
-
Feature selection based on mutual information. criteria of max-dependency, max-relevance, and min-redundancy
-
Peng H., Long F., Ding C. Feature selection based on mutual information. criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
8
-
-
12144251725
-
Effective feature selection scheme using mutual information
-
Huang D., Chow T.W.S. Effective feature selection scheme using mutual information. Neurocomputing 2005, 63:325-343.
-
(2005)
Neurocomputing
, vol.63
, pp. 325-343
-
-
Huang, D.1
Chow, T.W.S.2
-
9
-
-
40649115462
-
A parameterless feature ranking algorithm based on mi
-
Huang J.J., Cai Y.Z., Xu X.M. A parameterless feature ranking algorithm based on mi. Neurocomputing 2008, 71:1656-1668.
-
(2008)
Neurocomputing
, vol.71
, pp. 1656-1668
-
-
Huang, J.J.1
Cai, Y.Z.2
Xu, X.M.3
-
10
-
-
85146422424
-
Apractical approach to feature selection
-
Morgan Kaufmann, San Francisco, CA, USA
-
K. Kira, L. Rendell, Apractical approach to feature selection, in: Proceedings of the 9th International Workshop on Machine Learning (ML'92), Morgan Kaufmann, San Francisco, CA, USA, 1992, pp. 249-256.
-
(1992)
in: Proceedings of the 9th International Workshop on Machine Learning (ML'92)
, pp. 249-256
-
-
Kira, K.1
Rendell, L.2
-
11
-
-
84992726552
-
Estimating attributes: analysis and extensions of relief
-
Springer-Verlag New York, Inc., Secaucus, NJ, USA
-
I. Kononenko, Estimating attributes: analysis and extensions of relief, in: Proceedings of European Conference on Machine Learning (ECML'94), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1994, pp. 171-182.
-
(1994)
in: Proceedings of European Conference on Machine Learning (ECML'94)
, pp. 171-182
-
-
Kononenko, I.1
-
12
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 1994, 5(4):537-550.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
13
-
-
85065703189
-
Correlation-based feature selection for discrete and numeric class machine learning
-
Morgan Kaufmann, Los Altos, CA, USA.
-
M.A. Hall, Correlation-based feature selection for discrete and numeric class machine learning, in: Proceedings of the 7th International Conference on Machine Learning (ICML'00), Morgan Kaufmann, Los Altos, CA, USA, 2000, pp. 359-366.
-
(2000)
in: Proceedings of the 7th International Conference on Machine Learning (ICML'00)
, pp. 359-366
-
-
Hall, M.A.1
-
14
-
-
33645690579
-
Fast binary feature selection with conditional mutual information
-
Flueret F. Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 2004, 5:1531-1555.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1531-1555
-
-
Flueret, F.1
-
15
-
-
76749137632
-
Local causal and Markov blanket induction for causal discovery and feature selection for classification Part I. algorithms and empirical evaluation
-
Tsamardinos I., Aliferis C., Statnikov A. Local causal and Markov blanket induction for causal discovery and feature selection for classification Part I. algorithms and empirical evaluation. J. Mach. Learn. Res. 2010, 11:171-234.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 171-234
-
-
Tsamardinos, I.1
Aliferis, C.2
Statnikov, A.3
-
16
-
-
77956517464
-
-
Online streaming feature selection, in: Proceedings of the 27th International Conference on Machine Learning (ICML'10), Omnipress, Madison, WI, USA
-
X. Wu, K. Yu, H. Wang, W. Ding, Online streaming feature selection, in: Proceedings of the 27th International Conference on Machine Learning (ICML'10), Omnipress, Madison, WI, USA, 2010, pp. 1159-1166.
-
(2010)
, pp. 1159-1166
-
-
Wu, X.1
Yu, K.2
Wang, H.3
Ding, W.4
-
17
-
-
33845802629
-
Stochastic local search for the feature set problem, with applications to microarray data
-
Albrecht A.A. Stochastic local search for the feature set problem, with applications to microarray data. Appl. Math. Comput. 2006, 183(2):1148-1164.
-
(2006)
Appl. Math. Comput.
, vol.183
, Issue.2
, pp. 1148-1164
-
-
Albrecht, A.A.1
-
18
-
-
0036127473
-
Input feature selection for classification problems
-
Kwak N., Choi C.H. Input feature selection for classification problems. IEEE Trans. Neural Networks 2002, 13(1):143-159.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.1
, pp. 143-159
-
-
Kwak, N.1
Choi, C.H.2
-
19
-
-
84855872857
-
Feature subset selection with cumulate conditional mutual information minimization
-
Zhang Y., Zhang Z. Feature subset selection with cumulate conditional mutual information minimization. Expert Syst. with Appl. 2012, 39:6078-6088.
-
(2012)
Expert Syst. with Appl.
, vol.39
, pp. 6078-6088
-
-
Zhang, Y.1
Zhang, Z.2
-
20
-
-
85115260483
-
Floating search methods for feature selection with nonmonotonic criterion functions
-
Pudil P., Ferri F.J., Novovicova J., Kittler J. Floating search methods for feature selection with nonmonotonic criterion functions. Pattern Recognition 1994, 2:279-283.
-
(1994)
Pattern Recognition
, vol.2
, pp. 279-283
-
-
Pudil, P.1
Ferri, F.J.2
Novovicova, J.3
Kittler, J.4
-
21
-
-
0003584577
-
-
Prentice Hall, Upper Saddle River, NJ, USA
-
Russell S.J., Norvig P. Artificial Intelligence. A Modern Approach 2003, Prentice Hall, Upper Saddle River, NJ, USA. 2nd edition.
-
(2003)
Artificial Intelligence. A Modern Approach
-
-
Russell, S.J.1
Norvig, P.2
-
22
-
-
84960463485
-
Minimum redundancy feature selection from microarray gene expression data
-
IEEE Computer Society, Washington, DC, USA
-
C. Ding, H. Peng, Minimum redundancy feature selection from microarray gene expression data, in: Proceedings of the IEEE Computer Society Conference on Bioinformatics (CSB'03), IEEE Computer Society, Washington, DC, USA, 2003, pp. 523-528.
-
(2003)
in: Proceedings of the IEEE Computer Society Conference on Bioinformatics (CSB'03)
, pp. 523-528
-
-
Ding, C.1
Peng, H.2
-
23
-
-
18744400819
-
Feature selection with conditional mutual information maximin in text categorization
-
ACM Press, New York, NY, USA
-
G. Wang, F.H. Lochovsky, Q. Yang, Feature selection with conditional mutual information maximin in text categorization, in: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM'04), ACM Press, New York, NY, USA, 2004, pp. 342-349.
-
(2004)
in: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM'04)
, pp. 342-349
-
-
Wang, G.1
Lochovsky, F.H.2
Yang, Q.3
-
24
-
-
76749129275
-
Supervised feature selection by clustering using conditional mutual information-based distances
-
Sotoca J.M., Pla F. Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recognition 2010, 43(6):2068-2081.
-
(2010)
Pattern Recognition
, vol.43
, Issue.6
, pp. 2068-2081
-
-
Sotoca, J.M.1
Pla, F.2
-
26
-
-
0000012317
-
-
Toward optimal feature selection, in: Proceedings of International Conference on Machine Learning (ICML'96), Morgan Kaufmann, Los Altos, CA, USA
-
D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of International Conference on Machine Learning (ICML'96), Morgan Kaufmann, Los Altos, CA, USA, 1996, pp. 284-292.
-
(1996)
, pp. 284-292
-
-
Koller, D.1
Sahami, M.2
-
27
-
-
1642397083
-
Algorithms for large scale Markov blanket discovery
-
AAAI Press, Menlo Park, CA, USA
-
I. Tsamardinos, C.F. Aliferis, A. Statnikov, Algorithms for large scale Markov blanket discovery, in: Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference (FLAIRS'03), AAAI Press, Menlo Park, CA, USA, 2003, pp. 376-381.
-
(2003)
in: Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference (FLAIRS'03)
, pp. 376-381
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.3
-
28
-
-
34548559167
-
Speculative Markov blanket discovery for optimal feature selection
-
IEEE Computer Society Press, Washington, DC, USA
-
S. Yaramakala, D. Margaritis, Speculative Markov blanket discovery for optimal feature selection, in: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05), IEEE Computer Society Press, Washington, DC, USA, 2005, pp. 809-812.
-
(2005)
in: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05)
, pp. 809-812
-
-
Yaramakala, S.1
Margaritis, D.2
-
29
-
-
33746035971
-
The max-min hillclimbing Bayesian network structure learning algorithm
-
Tsamardinos I., Brown L.E., Aliferis C.F. The max-min hillclimbing Bayesian network structure learning algorithm. Mach. Learn. 2006, 65(1):31-78.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
30
-
-
34249931694
-
Towards scalable and data efficient learning of Markov boundaries
-
Peòa J.M., Nilsson R., Björkegren J., Tegnér J. Towards scalable and data efficient learning of Markov boundaries. Int. J. Approx. Reason. 2007, 45(2):211-232.
-
(2007)
Int. J. Approx. Reason.
, vol.45
, Issue.2
, pp. 211-232
-
-
Peòa, J.M.1
Nilsson, R.2
Björkegren, J.3
Tegnér, J.4
-
31
-
-
77649273505
-
Cog. local decomposition for rare class analysis
-
Wu J., Xiong H., Chen J. Cog. local decomposition for rare class analysis. Data Min. Knowl. Discovery 2010, 20(2):191-220.
-
(2010)
Data Min. Knowl. Discovery
, vol.20
, Issue.2
, pp. 191-220
-
-
Wu, J.1
Xiong, H.2
Chen, J.3
-
32
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
Morgan Kaufmann Publishers, San Francisco, CA
-
G.H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, in: Proceedings of the 11th International Conference on Machine Learning (ICML'94), Morgan Kaufmann Publishers, San Francisco, CA, 1994, pp. 121-129.
-
(1994)
in: Proceedings of the 11th International Conference on Machine Learning (ICML'94)
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
33
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
Robnik-Sikonja M., Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53:23-69.
-
(2003)
Mach. Learn.
, vol.53
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
-
34
-
-
0003957032
-
-
Morgan Kaufmann, San Francisco, CA, USA
-
Witten H.I., Frank E. Data Mining. Practical Machine Learning Tools and Techniques with Java Implementations 2000, Morgan Kaufmann, San Francisco, CA, USA.
-
(2000)
Data Mining. Practical Machine Learning Tools and Techniques with Java Implementations
-
-
Witten, H.I.1
Frank, E.2
-
36
-
-
0025725905
-
Instance-based learning algorithms
-
Aha D., Kibler D. Instance-based learning algorithms. Mach. Learn. 1991, 6:37-66.
-
(1991)
Mach. Learn.
, vol.6
, pp. 37-66
-
-
Aha, D.1
Kibler, D.2
-
38
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
Hsu C.W., Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 2002, 13:415-425.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
|