메뉴 건너뛰기




Volumn 77, Issue , 2015, Pages 92-102

A combination method for interval forecasting of agricultural commodity futures prices

Author keywords

Agricultural commodity futures price forecasting; Econometric modeling; Interval valued data; Multi output support vector regression (MSVR); Vector error correction model (VECM)

Indexed keywords

AGRICULTURAL ROBOTS; AGRICULTURE; COSTS; ERROR CORRECTION; FORECASTING; SUPPORT VECTOR REGRESSION; VECTORS;

EID: 84922646481     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2015.01.002     Document Type: Article
Times cited : (96)

References (60)
  • 1
    • 0032090662 scopus 로고    scopus 로고
    • Forecasting S&P 500 stock index futures with a hybrid AI system
    • R. Tsaih, Y. Hsu, and C.C. Lai Forecasting S&P 500 stock index futures with a hybrid AI system Decis. Support Syst. 23 2 1998 161 174
    • (1998) Decis. Support Syst. , vol.23 , Issue.2 , pp. 161-174
    • Tsaih, R.1    Hsu, Y.2    Lai, C.C.3
  • 2
    • 84874018551 scopus 로고    scopus 로고
    • A hybrid procedure with feature selection for resolving stock/futures price forecasting problems
    • C.-M. Hsu A hybrid procedure with feature selection for resolving stock/futures price forecasting problems Neural Comput. Appl. 22 3-4 2013 651 671
    • (2013) Neural Comput. Appl. , vol.22 , Issue.34 , pp. 651-671
    • Hsu, C.-M.1
  • 3
    • 4444303978 scopus 로고    scopus 로고
    • Using neural networks for forecasting volatility of S&P 500 index futures prices
    • S.A. Hamid, and Z. Iqbal Using neural networks for forecasting volatility of S&P 500 index futures prices J. Bus. Res. 57 10 2004 1116 1125
    • (2004) J. Bus. Res. , vol.57 , Issue.10 , pp. 1116-1125
    • Hamid, S.A.1    Iqbal, Z.2
  • 4
    • 0036248776 scopus 로고    scopus 로고
    • Measuring and forecasting S&P 500 index-futures volatility using high-frequency data
    • M. Martens Measuring and forecasting S&P 500 index-futures volatility using high-frequency data J. Futures Markets 22 6 2002 497 518
    • (2002) J. Futures Markets , vol.22 , Issue.6 , pp. 497-518
    • Martens, M.1
  • 5
    • 78650937993 scopus 로고    scopus 로고
    • Are VIX futures prices predictable? An empirical investigation
    • E. Konstantinidi, and G. Skiadopoulos Are VIX futures prices predictable? An empirical investigation Int. J. Forecast. 27 2 2011 543 560
    • (2011) Int. J. Forecast. , vol.27 , Issue.2 , pp. 543-560
    • Konstantinidi, E.1    Skiadopoulos, G.2
  • 6
    • 84888199499 scopus 로고    scopus 로고
    • Filtering and forecasting commodity futures prices under an HMM framework
    • P. Date, R. Mamon, and A. Tenyakov Filtering and forecasting commodity futures prices under an HMM framework Energy Econ. 40(Complete) 2013 1001 1013
    • (2013) Energy Econ. , vol.40 COMPLETE , pp. 1001-1013
    • Date, P.1    Mamon, R.2    Tenyakov, A.3
  • 7
    • 33745662678 scopus 로고    scopus 로고
    • Modeling and forecasting petroleum futures volatility
    • P. Sadorsky Modeling and forecasting petroleum futures volatility Energy Econ. 28 4 2006 467 488
    • (2006) Energy Econ. , vol.28 , Issue.4 , pp. 467-488
    • Sadorsky, P.1
  • 8
    • 84856051565 scopus 로고    scopus 로고
    • Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models
    • M.E.H. Arouri, A. Lahiani, A. Lévy, and D.K. Nguyen Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models Energy Econ. 34 1 2012 283 293
    • (2012) Energy Econ. , vol.34 , Issue.1 , pp. 283-293
    • Arouri, M.E.H.1    Lahiani, A.2    Lévy, A.3    Nguyen, D.K.4
  • 9
    • 74149091990 scopus 로고    scopus 로고
    • Nonlinearity and intraday efficiency tests on energy futures markets
    • T. Wang, and J. Yang Nonlinearity and intraday efficiency tests on energy futures markets Energy Econ. 32 2 2010 496 503
    • (2010) Energy Econ. , vol.32 , Issue.2 , pp. 496-503
    • Wang, T.1    Yang, J.2
  • 10
    • 78049404158 scopus 로고    scopus 로고
    • Volatility forecasting for crude oil futures
    • M. Marzo, and P. Zagaglia Volatility forecasting for crude oil futures Appl. Econ. Lett. 17 16 2010 1587 1599
    • (2010) Appl. Econ. Lett. , vol.17 , Issue.16 , pp. 1587-1599
    • Marzo, M.1    Zagaglia, P.2
  • 11
    • 84874305995 scopus 로고    scopus 로고
    • Modeling and forecasting the volatility of petroleum futures prices
    • S.H. Kang, and S.-M. Yoon Modeling and forecasting the volatility of petroleum futures prices Energy Econ. 36 2013 354 362
    • (2013) Energy Econ. , vol.36 , pp. 354-362
    • Kang, S.H.1    Yoon, S.-M.2
  • 12
    • 39749144532 scopus 로고    scopus 로고
    • Can the dynamics of the term structure of petroleum futures be forecasted? Evidence from major markets
    • T. Chantziara, and G. Skiadopoulos Can the dynamics of the term structure of petroleum futures be forecasted? Evidence from major markets Energy Econ. 30 3 2008 962 985
    • (2008) Energy Econ. , vol.30 , Issue.3 , pp. 962-985
    • Chantziara, T.1    Skiadopoulos, G.2
  • 13
    • 33749665980 scopus 로고    scopus 로고
    • Forecasting nonlinear crude oil futures prices
    • S. Moshiri, and F. Foroutan Forecasting nonlinear crude oil futures prices Energy J. 27 4 2006 81 95
    • (2006) Energy J. , vol.27 , Issue.4 , pp. 81-95
    • Moshiri, S.1    Foroutan, F.2
  • 14
    • 84978567506 scopus 로고
    • Forecasting S&P and gold futures prices: An application of neural networks
    • G. Grudnitski, and L. Osburn Forecasting S&P and gold futures prices: an application of neural networks J. Futures Markets 13 6 1993 631 643
    • (1993) J. Futures Markets , vol.13 , Issue.6 , pp. 631-643
    • Grudnitski, G.1    Osburn, L.2
  • 16
    • 0036146848 scopus 로고    scopus 로고
    • Does knowledge of the cost of carry model improve commodity futures price forecasting ability? A case study using the London metal exchange lead contract
    • R. Heaney Does knowledge of the cost of carry model improve commodity futures price forecasting ability? A case study using the London metal exchange lead contract Int. J. Forecast. 18 1 2002 45 65
    • (2002) Int. J. Forecast. , vol.18 , Issue.1 , pp. 45-65
    • Heaney, R.1
  • 17
    • 79953723777 scopus 로고    scopus 로고
    • Modeling and forecasting volatility in the global food commodity prices
    • I.A. Onour, and B.S. Sergi Modeling and forecasting volatility in the global food commodity prices Agric. Econ.-Czech 57 3 2011 118 131
    • (2011) Agric. Econ.-Czech , vol.57 , Issue.3 , pp. 118-131
    • Onour, I.A.1    Sergi, B.S.2
  • 18
    • 0033418763 scopus 로고    scopus 로고
    • A reappraisal of the forecasting performance of corn and soybean new crop futures
    • C.R. Zulauf, S.H. Irwin, J.E. Ropp, and A.J. Sberna A reappraisal of the forecasting performance of corn and soybean new crop futures J. Futures Markets 19 5 1999 603 618
    • (1999) J. Futures Markets , vol.19 , Issue.5 , pp. 603-618
    • Zulauf, C.R.1    Irwin, S.H.2    Ropp, J.E.3    Sberna, A.J.4
  • 19
    • 80555154626 scopus 로고    scopus 로고
    • Nonlinearities in the price behaviour of agricultural products: The case of cotton
    • E. Zafeiriou, and N. Sariannidis Nonlinearities in the price behaviour of agricultural products: the case of cotton J. Food Agric. Environ. 9 2 2011 551 555
    • (2011) J. Food Agric. Environ. , vol.9 , Issue.2 , pp. 551-555
    • Zafeiriou, E.1    Sariannidis, N.2
  • 20
    • 70350751560 scopus 로고    scopus 로고
    • Constrained linear regression models for symbolic interval-valued variables
    • E.d.A. Lima Neto, and F.d.A. de Carvalho Constrained linear regression models for symbolic interval-valued variables Comput. Stat. Data Anal. 54 2 2010 333 347
    • (2010) Comput. Stat. Data Anal. , vol.54 , Issue.2 , pp. 333-347
    • Lima Neto, E.D.A.1    De Carvalho, F.D.A.2
  • 23
    • 34548745785 scopus 로고    scopus 로고
    • An application of interval methods to stock market forecasting
    • C. Hu, and L.T. He An application of interval methods to stock market forecasting Reliable Comput. 13 5 2007 423 434
    • (2007) Reliable Comput. , vol.13 , Issue.5 , pp. 423-434
    • Hu, C.1    He, L.T.2
  • 24
    • 84888287824 scopus 로고    scopus 로고
    • Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
    • T. Xiong, Y. Bao, and Z. Hu Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting Knowl.-Based Syst. 55 2014 87 100
    • (2014) Knowl.-Based Syst. , vol.55 , pp. 87-100
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 25
    • 78651439499 scopus 로고    scopus 로고
    • Different approaches to forecast interval time series: A comparison in finance
    • J. Arroyo, R. Espínola, and C. Maté Different approaches to forecast interval time series: a comparison in finance Comput. Econ. 37 2 2011 169 191
    • (2011) Comput. Econ. , vol.37 , Issue.2 , pp. 169-191
    • Arroyo, J.1    Espínola, R.2    Maté, C.3
  • 26
    • 79956346745 scopus 로고    scopus 로고
    • Holt's exponential smoothing and neural network models for forecasting interval-valued time series
    • A.L.S. Maia, and F.d.A. de Carvalho Holt's exponential smoothing and neural network models for forecasting interval-valued time series Int. J. Forecast. 27 3 2011 740 759
    • (2011) Int. J. Forecast. , vol.27 , Issue.3 , pp. 740-759
    • Maia, A.L.S.1    De Carvalho, F.D.A.2
  • 27
    • 72249094153 scopus 로고    scopus 로고
    • Electric power demand forecasting using interval time series: A comparison between VAR and iMLP
    • C. García-Ascanio, and C. Maté Electric power demand forecasting using interval time series: a comparison between VAR and iMLP Energy Policy 38 2 2010 715 725
    • (2010) Energy Policy , vol.38 , Issue.2 , pp. 715-725
    • García-Ascanio, C.1    Maté, C.2
  • 28
    • 33847300536 scopus 로고    scopus 로고
    • IMLP: Applying multi-layer perceptrons to interval-valued data
    • A.M. San Roque, C. Maté, J. Arroyo, and Á. Sarabia iMLP: applying multi-layer perceptrons to interval-valued data Neural Process. Lett. 25 2 2007 157 169
    • (2007) Neural Process. Lett. , vol.25 , Issue.2 , pp. 157-169
    • San Roque, A.M.1    Maté, C.2    Arroyo, J.3    Sarabia Á.4
  • 30
    • 33847009451 scopus 로고    scopus 로고
    • An empirical model of daily highs and lows
    • Y.W. Cheung An empirical model of daily highs and lows Int. J. Finance Econ. 12 1 2007 1 20
    • (2007) Int. J. Finance Econ. , vol.12 , Issue.1 , pp. 1-20
    • Cheung, Y.W.1
  • 31
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • G.P. Zhang Time series forecasting using a hybrid ARIMA and neural network model Neurocomputing 50 2003 159 175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 32
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • P.-F. Pai, and C.-S. Lin A hybrid ARIMA and support vector machines model in stock price forecasting Omega 33 6 2005 497 505
    • (2005) Omega , vol.33 , Issue.6 , pp. 497-505
    • Pai, P.-F.1    Lin, C.-S.2
  • 33
    • 33748133361 scopus 로고    scopus 로고
    • A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan
    • K.-Y. Chen, and C.-H. Wang A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan Expert Syst. Appl. 32 1 2007 254 264
    • (2007) Expert Syst. Appl. , vol.32 , Issue.1 , pp. 254-264
    • Chen, K.-Y.1    Wang, C.-H.2
  • 34
    • 79953692971 scopus 로고    scopus 로고
    • Combining linear and nonlinear model in forecasting tourism demand
    • K.-Y. Chen Combining linear and nonlinear model in forecasting tourism demand Expert Syst. Appl. 38 8 2011 10368 10376
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 10368-10376
    • Chen, K.-Y.1
  • 35
    • 77955322938 scopus 로고    scopus 로고
    • Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling
    • J. Che, and J. Wang Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling Energy Convers. Manage. 51 10 2010 1911 1917
    • (2010) Energy Convers. Manage. , vol.51 , Issue.10 , pp. 1911-1917
    • Che, J.1    Wang, J.2
  • 36
    • 56549127838 scopus 로고    scopus 로고
    • Forecasting models for interval-valued time series
    • A.L.S. Maia, F.d.A. de Carvalho, and T.B. Ludermir Forecasting models for interval-valued time series Neurocomputing 71 16 2008 3344 3352
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3344-3352
    • Maia, A.L.S.1    De Carvalho, F.D.A.2    Ludermir, T.B.3
  • 37
    • 3543084652 scopus 로고    scopus 로고
    • Multi-dimensional function approximation and regression estimation
    • F. Pérez-Cruz, G. Camps-Valls, E. Soria-Olivas, J. Pérez-Ruixo, A. Figueiras-Vidal, A. Artés-Rodríguez, Multi-dimensional function approximation and regression estimation, in: Artificial Neural Networks - ICANN, vol. 2002, 2002, pp. 796-796.
    • (2002) Artificial Neural Networks ICANN , vol.2002 , pp. 796-796
    • Pérez-Cruz, F.1
  • 38
    • 84981579311 scopus 로고
    • Maximum likelihood estimation and inference on cointegration - With applications to the demand for money
    • S. Johansen, and K. Juselius Maximum likelihood estimation and inference on cointegration - with applications to the demand for money Oxford Bull. Econ. Stat. 52 2 1990 169 210
    • (1990) Oxford Bull. Econ. Stat. , vol.52 , Issue.2 , pp. 169-210
    • Johansen, S.1    Juselius, K.2
  • 39
    • 84886454178 scopus 로고    scopus 로고
    • Construction price prediction using vector error correction models
    • H. Jiang, Y. Xu, and C. Liu Construction price prediction using vector error correction models J. Constr. Eng. Manage. 139 11 2013
    • (2013) J. Constr. Eng. Manage. , vol.139 , Issue.11
    • Jiang, H.1    Xu, Y.2    Liu, C.3
  • 40
    • 79953177487 scopus 로고    scopus 로고
    • Construction manpower demand forecasting: A comparative study of univariate time series, multiple regression and econometric modelling techniques
    • J.M. Wong, A.P. Chan, and Y. Chiang Construction manpower demand forecasting: a comparative study of univariate time series, multiple regression and econometric modelling techniques Eng. Constr. Archit. Manage. 18 1 2011 7 29
    • (2011) Eng. Constr. Archit. Manage. , vol.18 , Issue.1 , pp. 7-29
    • Wong, J.M.1    Chan, A.P.2    Chiang, Y.3
  • 41
    • 61649115236 scopus 로고    scopus 로고
    • A high-low model of daily stock price ranges
    • Y.L. Cheung, Y.W. Cheung, and A.T. Wan A high-low model of daily stock price ranges J. Forecast. 28 2 2009 103 119
    • (2009) J. Forecast. , vol.28 , Issue.2 , pp. 103-119
    • Cheung, Y.L.1    Cheung, Y.W.2    Wan, A.T.3
  • 44
    • 67249139809 scopus 로고    scopus 로고
    • Rolling over stock index futures contracts
    • O. Carchano, and A. Pardo Rolling over stock index futures contracts J. Futures Markets 29 7 2009 684 694
    • (2009) J. Futures Markets , vol.29 , Issue.7 , pp. 684-694
    • Carchano, O.1    Pardo, A.2
  • 46
    • 34547896974 scopus 로고    scopus 로고
    • Direct multi-step estimation and forecasting
    • G. Chevillon Direct multi-step estimation and forecasting J. Econ. Surv. 21 4 2007 746 785
    • (2007) J. Econ. Surv. , vol.21 , Issue.4 , pp. 746-785
    • Chevillon, G.1
  • 47
    • 84883384262 scopus 로고    scopus 로고
    • Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
    • T. Xiong, Y. Bao, and Z. Hu Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices Energy Econ. 40 2013 405 415
    • (2013) Energy Econ. , vol.40 , pp. 405-415
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 48
    • 78149409761 scopus 로고    scopus 로고
    • An empirical model of daily highs and lows of West Texas Intermediate crude oil prices
    • A.W.W. He, J.T.K. Kwok, and A.T.K. Wan An empirical model of daily highs and lows of West Texas Intermediate crude oil prices Energy Econ. 32 6 2010 1499 1506
    • (2010) Energy Econ. , vol.32 , Issue.6 , pp. 1499-1506
    • He, A.W.W.1    Kwok, J.T.K.2    Wan, A.T.K.3
  • 49
    • 84903939323 scopus 로고    scopus 로고
    • Interval forecasting of electricity demand: A novel bivariate EMD-based support vector regression modeling framework
    • T. Xiong, Y. Bao, and Z. Hu Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework Int. J. Electr. Power Energy Syst. 63 2014 353 362
    • (2014) Int. J. Electr. Power Energy Syst. , vol.63 , pp. 353-362
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 50
    • 27544466375 scopus 로고    scopus 로고
    • A test for superior predictive ability
    • P.R. Hansen A test for superior predictive ability J. Bus. Econ. Stat. 23 4 2005
    • (2005) J. Bus. Econ. Stat. , vol.23 , Issue.4
    • Hansen, P.R.1
  • 51
  • 53
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • I.C. Trelea The particle swarm optimization algorithm: convergence analysis and parameter selection Inform. Proces. Lett. 85 6 2003 317 325
    • (2003) Inform. Proces. Lett. , vol.85 , Issue.6 , pp. 317-325
    • Trelea, I.C.1
  • 56
    • 33847661566 scopus 로고    scopus 로고
    • An effective PSO-based memetic algorithm for flow shop scheduling
    • B. Liu, L. Wang, and Y.-H. Jin An effective PSO-based memetic algorithm for flow shop scheduling IEEE Trans. Syst. Man Cybern. B: Cybern. 37 1 2007 18 27
    • (2007) IEEE Trans. Syst. Man Cybern. B: Cybern. , vol.37 , Issue.1 , pp. 18-27
    • Liu, B.1    Wang, L.2    Jin, Y.-H.3
  • 57
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series for forecasting: The forecast package for R
    • R.J. Hyndman, and Y. Khandakar Automatic time series for forecasting: the forecast package for R J. Stat. Softw. 26 2007 1 22
    • (2007) J. Stat. Softw. , vol.26 , pp. 1-22
    • Hyndman, R.J.1    Khandakar, Y.2
  • 58
    • 34548170754 scopus 로고    scopus 로고
    • Methodology for long-term prediction of time series
    • A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse Methodology for long-term prediction of time series Neurocomputing 70 16 2007 2861 2869
    • (2007) Neurocomputing , vol.70 , Issue.16 , pp. 2861-2869
    • Sorjamaa, A.1    Hao, J.2    Reyhani, N.3    Ji, Y.4    Lendasse, A.5
  • 59
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1 - A strategy for system predictor identification
    • A. Sharma Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1 - A strategy for system predictor identification J. Hydrol. 239 1 2000 232 239
    • (2000) J. Hydrol. , vol.239 , Issue.1 , pp. 232-239
    • Sharma, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.