메뉴 건너뛰기




Volumn 150, Issue PB, 2015, Pages 599-610

Projection inspector: Assessment and synthesis of multidimensional projections

Author keywords

Multidimensional projection; Quality metrics

Indexed keywords

VISUALIZATION;

EID: 84922625489     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.07.072     Document Type: Article
Times cited : (39)

References (46)
  • 2
    • 16244396435 scopus 로고    scopus 로고
    • A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections
    • in: IEEE Symposium on Information Visualization, IEEE
    • J. Seo, B. Shneiderman, A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections, in: IEEE Symposium on Information Visualization, IEEE, 2004, pp. 65-72.
    • (2004) , pp. 65-72
    • Seo, J.1    Shneiderman, B.2
  • 3
    • 85091772050 scopus 로고    scopus 로고
    • Stress maps: analysing local phenomena in dimensionality reduction based visualisations
    • in: EuroVAST 2010: International Symposium on Visual Analytics Science and Technology, The Eurographics Association
    • C. Seifert, V. Sabol, W. Kienreich, Stress maps: analysing local phenomena in dimensionality reduction based visualisations, in: EuroVAST 2010: International Symposium on Visual Analytics Science and Technology, The Eurographics Association, 2010, pp. 13-18.
    • (2010) , pp. 13-18
    • Seifert, C.1    Sabol, V.2    Kienreich, W.3
  • 4
    • 84877788942 scopus 로고    scopus 로고
    • Checkviz: sanity check and topological clues for linear and non-linear mappings
    • S. Lespinats, M. Aupetit, Checkviz: sanity check and topological clues for linear and non-linear mappings, in: Computer Graphics Forum, vol. 30, 2011, pp. 113-125.
    • (2011) Computer Graphics Forum , vol.30 , pp. 113-125
    • Lespinats, S.1    Aupetit, M.2
  • 5
    • 80855141835 scopus 로고    scopus 로고
    • Quality metrics in high-dimensional data visualization. an overview and systematization
    • Bertini E., Tatu A., Keim D. Quality metrics in high-dimensional data visualization. an overview and systematization. IEEE Trans. Vis. Comput. Graph. 2011, 17(12):2203-2212.
    • (2011) IEEE Trans. Vis. Comput. Graph. , vol.17 , Issue.12 , pp. 2203-2212
    • Bertini, E.1    Tatu, A.2    Keim, D.3
  • 6
    • 85015046103 scopus 로고    scopus 로고
    • Visual and semantic interpretability of projections of high dimensional data for classification tasks
    • arXiv preprint .
    • I. Icke, A. Rosenberg, Visual and semantic interpretability of projections of high dimensional data for classification tasks, arXiv preprint . http://arxiv:1205.4776.
    • Icke, I.1    Rosenberg, A.2
  • 8
    • 56349137204 scopus 로고    scopus 로고
    • Evaluating the effectiveness of projection techniques in visual data mining
    • Imaging, and Image Processing
    • D. Marghescu, Evaluating the effectiveness of projection techniques in visual data mining, in: Proceedings of the 6th IASTED International Conference on Visualization, Imaging, and Image Processing, 2006, pp. 94-103.
    • (2006) Proceedings of the 6th IASTED International Conference on Visualization , pp. 94-103
    • Marghescu, D.1
  • 9
    • 84875863474 scopus 로고    scopus 로고
    • A taxonomy of visual cluster separation factors
    • Sedlmair M., Tatu A., Munzner T., Tory M. A taxonomy of visual cluster separation factors. Comput. Graph. Forum 2012, 31(3pt4):1335-1344.
    • (2012) Comput. Graph. Forum , vol.31 , Issue.3 , pp. 1335-1344
    • Sedlmair, M.1    Tatu, A.2    Munzner, T.3    Tory, M.4
  • 10
    • 0000835612 scopus 로고
    • The grand tour. a tool for viewing multidimensional data
    • Asimov D. The grand tour. a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput. 1985, 6(1):128-143.
    • (1985) SIAM J. Sci. Stat. Comput. , vol.6 , Issue.1 , pp. 128-143
    • Asimov, D.1
  • 11
    • 0037191702 scopus 로고    scopus 로고
    • Class visualization of high-dimensional data with applications
    • Dhillon I.S., Modha D.S., Spangler W. Class visualization of high-dimensional data with applications. Comput. Stat. Data Anal. 2002, 41(1):59-90.
    • (2002) Comput. Stat. Data Anal. , vol.41 , Issue.1 , pp. 59-90
    • Dhillon, I.S.1    Modha, D.S.2    Spangler, W.3
  • 12
    • 54949155487 scopus 로고    scopus 로고
    • Rolling the dice. multidimensional visual exploration using scatterplot matrix navigation
    • Elmqvist N., Dragicevic P., Fekete J.-D. Rolling the dice. multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans. Vis. Comput. Graph. 2008, 14(6):1148-1539.
    • (2008) IEEE Trans. Vis. Comput. Graph. , vol.14 , Issue.6 , pp. 1148-1539
    • Elmqvist, N.1    Dragicevic, P.2    Fekete, J.-D.3
  • 13
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman J.H., Tukey J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. 1974, 100(9):881-890.
    • (1974) IEEE Trans. Comput. , vol.100 , Issue.9 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 14
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber P.J. Projection pursuit. Ann. Stat. 1985, 435-475.
    • (1985) Ann. Stat. , pp. 435-475
    • Huber, P.J.1
  • 15
    • 72849140660 scopus 로고    scopus 로고
    • Combining automated analysis and visualization techniques for effective exploration of high-dimensional data
    • in: IEEE Symposium on Visual Analytics Science and Technology (VAST)
    • A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind, H. Theisel, M. Magnor, D. Keim, Combining automated analysis and visualization techniques for effective exploration of high-dimensional data, in: IEEE Symposium on Visual Analytics Science and Technology (VAST), 2009.
    • (2009)
    • Tatu, A.1    Albuquerque, G.2    Eisemann, M.3    Schneidewind, J.4    Theisel, H.5    Magnor, M.6    Keim, D.7
  • 16
    • 68549110238 scopus 로고    scopus 로고
    • Selecting good views of high-dimensional data using class consistency
    • Sips M., Neubert B., Lewis J.P., Hanrahan P. Selecting good views of high-dimensional data using class consistency. Comput. Graph. Forum 2009, 28(3):831-838.
    • (2009) Comput. Graph. Forum , vol.28 , Issue.3 , pp. 831-838
    • Sips, M.1    Neubert, B.2    Lewis, J.P.3    Hanrahan, P.4
  • 17
    • 77956685977 scopus 로고    scopus 로고
    • Techniques for precision-based visual analysis of projected data
    • Schreck T., von Landesberger T., Bremm S. Techniques for precision-based visual analysis of projected data. Inf. Vis. 2010, 9(3):181-193.
    • (2010) Inf. Vis. , vol.9 , Issue.3 , pp. 181-193
    • Schreck, T.1    von Landesberger, T.2    Bremm, S.3
  • 19
    • 54949121720 scopus 로고    scopus 로고
    • Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets
    • in: IEEE Symposium on Information Visualization, IEEE
    • J. Wang, W. Peng, M.O. Ward, E.A. Rundensteiner, Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets, in: IEEE Symposium on Information Visualization, IEEE, 2003, pp. 105-112.
    • (2003) , pp. 105-112
    • Wang, J.1    Peng, W.2    Ward, M.O.3    Rundensteiner, E.A.4
  • 20
    • 33847360579 scopus 로고    scopus 로고
    • Visualizing distortions and recovering topology in continuous projection techniques
    • Aupetit M. Visualizing distortions and recovering topology in continuous projection techniques. Neurocomputing 2007, 70(7):1304-1330.
    • (2007) Neurocomputing , vol.70 , Issue.7 , pp. 1304-1330
    • Aupetit, M.1
  • 21
    • 84922651254 scopus 로고    scopus 로고
    • Proxilens: interactive exploration of high-dimensional data using projections
    • in: Eurovis Workshop on Visual Analytics using Multidimensional Projections
    • N. Heulot, M. Aupetit, J. Fekete, Proxilens: interactive exploration of high-dimensional data using projections, in: Eurovis Workshop on Visual Analytics using Multidimensional Projections, 2013.
    • (2013)
    • Heulot, N.1    Aupetit, M.2    Fekete, J.3
  • 23
    • 84893722220 scopus 로고    scopus 로고
    • Recursive least squares projection twin support vector machines for nonlinear classification
    • Ding S., Hua X. Recursive least squares projection twin support vector machines for nonlinear classification. Neurocomputing 2014, 130:3-9.
    • (2014) Neurocomputing , vol.130 , pp. 3-9
    • Ding, S.1    Hua, X.2
  • 25
    • 0037340416 scopus 로고    scopus 로고
    • Mean value coordinates
    • Floater M.S. Mean value coordinates. Comput. Aided Geom. Des. 2003, 20(1):19-27.
    • (2003) Comput. Aided Geom. Des. , vol.20 , Issue.1 , pp. 19-27
    • Floater, M.S.1
  • 27
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsupervised scale-invariant learning, in: CVPR, vol. 2, 2003, pp. 264-271.
    • (2003) CVPR , vol.2 , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 31
    • 77949507946 scopus 로고    scopus 로고
    • Information retrieval perspective to nonlinear dimensionality reduction for data visualization
    • Venna J., Peltonen J., Nybo K., Aidos H., Kaski S. Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 2010, 11:451-490. URL 〈http://dl.acm.org/citation.cfm?id=1756006.1756019〉.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 451-490
    • Venna, J.1    Peltonen, J.2    Nybo, K.3    Aidos, H.4    Kaski, S.5
  • 32
    • 84896515630 scopus 로고    scopus 로고
    • Visual analysis of dimensionality reduction quality for parameterized projections
    • Martins R.M., Coimbra D.B., Minghim R., Telea A. Visual analysis of dimensionality reduction quality for parameterized projections. Comput. Graph. 2014, 41(0):26-42. URL 〈http://dx.doi.org/10.1016/j.cag.2014.01.006〉.
    • (2014) Comput. Graph. , vol.41 , Issue.0 , pp. 26-42
    • Martins, R.M.1    Coimbra, D.B.2    Minghim, R.3    Telea, A.4
  • 33
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • Kruskal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29:115-129.
    • (1964) Psychometrika , vol.29 , pp. 115-129
    • Kruskal, J.B.1
  • 34
    • 28444473249 scopus 로고    scopus 로고
    • Supervised nonlinear dimensionality reduction for visualization and classification
    • Geng X., Zhan D.-C., Zhou Z.-H. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 2005, 35(6):1098-1107.
    • (2005) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.35 , Issue.6 , pp. 1098-1107
    • Geng, X.1    Zhan, D.-C.2    Zhou, Z.-H.3
  • 36
  • 38
    • 41549088933 scopus 로고    scopus 로고
    • Least square projection. a fast high-precision multidimensional projection technique and its application to document mapping
    • Paulovich F.V., Nonato L.G., Minghim R., Levkowitz H. Least square projection. a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans. Vis. Comput. Graph. 2008, 14(3):564-575.
    • (2008) IEEE Trans. Vis. Comput. Graph. , vol.14 , Issue.3 , pp. 564-575
    • Paulovich, F.V.1    Nonato, L.G.2    Minghim, R.3    Levkowitz, H.4
  • 39
    • 0342672666 scopus 로고    scopus 로고
    • A new method of generalizing Sammon mapping with application to algorithm speed-up
    • in: M. Boasson, J.A. Kaandorp, J.F.M. Tonino, M.G. Vosselman (Eds.)
    • E. Pekalska, D. de Ridder, R.P.W. Duin, M.A. Kraaijveld, A new method of generalizing Sammon mapping with application to algorithm speed-up, in: M. Boasson, J.A. Kaandorp, J.F.M. Tonino, M.G. Vosselman (Eds.), Annual Conference of the Advanced School for Computing and Imaging, 1999, pp. 221-228.
    • (1999) Annual Conference of the Advanced School for Computing and Imaging , pp. 221-228
    • Pekalska, E.1    de Ridder, D.2    Duin, R.P.W.3    Kraaijveld, M.A.4
  • 40
    • 84998014096 scopus 로고    scopus 로고
    • A pivot-based routine for improved parent-finding in hybrid MDS
    • Morrison A., Chalmers M. A pivot-based routine for improved parent-finding in hybrid MDS. Inf. Vis. 2004, 3(2):109-122.
    • (2004) Inf. Vis. , vol.3 , Issue.2 , pp. 109-122
    • Morrison, A.1    Chalmers, M.2
  • 41
    • 33645662798 scopus 로고    scopus 로고
    • On improved projection techniques to support visual exploration of multidimensional data sets
    • Tejada E., Minghim R., Nonato L.G. On improved projection techniques to support visual exploration of multidimensional data sets. Inf. Vis. 2003, 2(4):218-231.
    • (2003) Inf. Vis. , vol.2 , Issue.4 , pp. 218-231
    • Tejada, E.1    Minghim, R.2    Nonato, L.G.3
  • 42
    • 84922612092 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Asuncion, D. Newman, UCI Machine Learning Repository (2007). URL 〈〉. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 43
    • 72049084727 scopus 로고    scopus 로고
    • Modeling wine preferences by data mining from physicochemical properties
    • Cortez P., Cerdeira A., Almeida F., Matos T., Reis J. Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 2009, 47(4):547-553.
    • (2009) Decis. Support Syst. , vol.47 , Issue.4 , pp. 547-553
    • Cortez, P.1    Cerdeira, A.2    Almeida, F.3    Matos, T.4    Reis, J.5
  • 46
    • 84922654688 scopus 로고    scopus 로고
    • Stability comparison of dimensionality reduction techniques attending to data and parameter variations
    • in: International Workshop on Visual Analytics using Multidimensional Projections (VAMP-EuroVis)
    • F.J. García-Fernández, M. Verleysen, J.A. Lee, I. Díaz, Stability comparison of dimensionality reduction techniques attending to data and parameter variations, in: International Workshop on Visual Analytics using Multidimensional Projections (VAMP-EuroVis), 2013.
    • (2013)
    • García-Fernández, F.J.1    Verleysen, M.2    Lee, J.A.3    Díaz, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.