메뉴 건너뛰기




Volumn 130, Issue , 2014, Pages 3-9

Recursive least squares projection twin support vector machines for nonlinear classification

Author keywords

Kernel trick; Least squares; Projection twin support vector machine; Recursive learning

Indexed keywords


EID: 84893722220     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.02.046     Document Type: Article
Times cited : (64)

References (24)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2:121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.1
  • 3
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: an application to face detection
    • in: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision Pattern Recognition
    • E. Osuna, R. Freund, F. Girosi, Training support vector machines: an application to face detection, in: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision Pattern Recognition, 1997, pp. 130-136.
    • (1997) , pp. 130-136
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 4
    • 0242383062 scopus 로고    scopus 로고
    • Support vector machine regression in chemometrics
    • in: Computing Science and Statistics, Proceedings of the 33rd Symposium on the Interface, American Statistical Association for the Interface Foundation of North America, Washington, DC
    • A. Demiriz, K.P. Bennett, C.M. Breneman, M.J. Embrechts, Support vector machine regression in chemometrics, in: Computing Science and Statistics, Proceedings of the 33rd Symposium on the Interface, American Statistical Association for the Interface Foundation of North America, Washington, DC, 2001.
    • (2001)
    • Demiriz, A.1    Bennett, K.P.2    Breneman, C.M.3    Embrechts, M.J.4
  • 5
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • Cao L. Support vector machines experts for time series forecasting. Neurocomputing 2003, 51:321-339.
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 10
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Arun Kumar M., Gopal M. Least squares twin support vector machines for pattern classification. Expert Systems with Applications 2009, 36(12):7535-7543.
    • (2009) Expert Systems with Applications , vol.36 , Issue.12 , pp. 7535-7543
    • Arun Kumar, M.1    Gopal, M.2
  • 11
    • 77956058730 scopus 로고    scopus 로고
    • Multi-weight vector projection support vector machines
    • Ye Q., Zhao C., Ye N., Chen Y. Multi-weight vector projection support vector machines. Pattern Recognition Letters 2010, 31(11):2006-2011.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.11 , pp. 2006-2011
    • Ye, Q.1    Zhao, C.2    Ye, N.3    Chen, Y.4
  • 12
    • 79958810411 scopus 로고    scopus 로고
    • Recursive projection twin support vector machine via within-class variance minimization
    • Chen X., Yang J., Ye Q., Liang J. Recursive projection twin support vector machine via within-class variance minimization. Pattern Recognition 2011, 44(10):2643-2655.
    • (2011) Pattern Recognition , vol.44 , Issue.10 , pp. 2643-2655
    • Chen, X.1    Yang, J.2    Ye, Q.3    Liang, J.4
  • 13
    • 84857059738 scopus 로고    scopus 로고
    • Least squares recursive projection twin support vector machine for classification
    • Shao Y.H., Deng N.Y., Yang Z.M. Least squares recursive projection twin support vector machine for classification. Pattern Recognition 2012, 45:2299-2307.
    • (2012) Pattern Recognition , vol.45 , pp. 2299-2307
    • Shao, Y.H.1    Deng, N.Y.2    Yang, Z.M.3
  • 14
    • 0035789613 scopus 로고    scopus 로고
    • Proximal support vector machine classifiers
    • in: Proceedings of Seventh International Conference on Knowledge and Data Discovery
    • G. Fung, Q.L. Mangasarian, Proximal support vector machine classifiers, in: Proceedings of Seventh International Conference on Knowledge and Data Discovery, 2001, pp. 77-86.
    • (2001) , pp. 77-86
    • Fung, G.1    Mangasarian, Q.L.2
  • 17
    • 39549116990 scopus 로고    scopus 로고
    • Recursive support vector machines for dimensionality reduction
    • Tao Q., Chu D., Wang J. Recursive support vector machines for dimensionality reduction. IEEE Transactions on Neural Networks 2008, 19:189-193.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , pp. 189-193
    • Tao, Q.1    Chu, D.2    Wang, J.3
  • 18
    • 33746217741 scopus 로고    scopus 로고
    • Face recognition using recursive Fisher linear discriminant
    • Xiang C., Fan X., Lee T. Face recognition using recursive Fisher linear discriminant. IEEE Transactions on Image Processing 2006, 15(8):2097-2105.
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.8 , pp. 2097-2105
    • Xiang, C.1    Fan, X.2    Lee, T.3
  • 19
    • 84893728424 scopus 로고    scopus 로고
    • in: Matrix Computations, third ed., The John Hopkins University Press, Baltimore, Maryland
    • G.H. Golub, C.F.V Loan, in: Matrix Computations, third ed., The John Hopkins University Press, Baltimore, Maryland, 1996.
    • (1996)
    • Golub, G.H.1    Loan, C.F.V.2
  • 20
    • 51649109792 scopus 로고    scopus 로고
    • Discriminatively regularized least-squares classification
    • Hui X., Chen S.C., Yang Q. Discriminatively regularized least-squares classification. Pattern Recognition 2009, 42(1):93-104.
    • (2009) Pattern Recognition , vol.42 , Issue.1 , pp. 93-104
    • Hui, X.1    Chen, S.C.2    Yang, Q.3
  • 21
    • 84893816544 scopus 로고
    • UCI Repository of Machine Learning Databases
    • P.M. Muphy, D.W. Aha, UCI Repository of Machine Learning Databases, 1992.
    • (1992)
    • Muphy, P.M.1    Aha, D.W.2
  • 22
    • 78650241155 scopus 로고    scopus 로고
    • Localized twin SVM via convex minimization
    • Ye Q.L., Zhao C.X., Ye N. Localized twin SVM via convex minimization. Neurocomputing 2011, 74:580-587.
    • (2011) Neurocomputing , vol.74 , pp. 580-587
    • Ye, Q.L.1    Zhao, C.X.2    Ye, N.3
  • 23
    • 80052923482 scopus 로고    scopus 로고
    • 1-Norm least squares twin support vector machines
    • Gao S.B., Ye Q.L., Ye N. 1-Norm least squares twin support vector machines. Neurocomputing 2011, 74:3590-3597.
    • (2011) Neurocomputing , vol.74 , pp. 3590-3597
    • Gao, S.B.1    Ye, Q.L.2    Ye, N.3
  • 24
    • 84893759475 scopus 로고    scopus 로고
    • NDC: Normally Distributed Clustered Datasets
    • D.R. Musicant, NDC: Normally Distributed Clustered Datasets, 1998. http://www.cs.wisc.edu/~musicant/data/ndc.
    • (1998)
    • Musicant, D.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.