메뉴 건너뛰기




Volumn 142, Issue , 2015, Pages 64-69

Fast optimization of hyperparameters for support vector regression models with highly predictive ability

Author keywords

Computational time; Hyperparameter; Optimization; Predictive ability; Support vector regression

Indexed keywords

ARTICLE; CALCULATION; CONTROLLED STUDY; MATHEMATICAL COMPUTING; NONLINEAR REGRESSION ANALYSIS; PREDICTION; PROCESS OPTIMIZATION; QUANTITATIVE STRUCTURE ACTIVITY RELATION; STATISTICAL MODEL; STATISTICAL PARAMETERS; SUPPORT VECTOR MACHINE; VALIDATION PROCESS;

EID: 84922595610     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.01.001     Document Type: Article
Times cited : (55)

References (22)
  • 1
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank I.E., Friedman J.H. A statistical view of some chemometrics regression tools. Technometrics 1993, 35:109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 2
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 1996, 58:267-288.
    • (1996) J. R. Stat. Soc. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 3
    • 45949123735 scopus 로고
    • Principal component analysis
    • Wold S. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2:37-52.
    • (1987) Chemom. Intell. Lab. Syst. , vol.2 , pp. 37-52
    • Wold, S.1
  • 5
    • 0035897291 scopus 로고    scopus 로고
    • In-line moisture measurement during granulation with a four-wavelength near-infrared sensor: an evaluation of process-related variables and a development of non-linear calibration model
    • Rantanen J., Rasanen E., Antikainen O., Mannermaa J.P., Yliruusi J. In-line moisture measurement during granulation with a four-wavelength near-infrared sensor: an evaluation of process-related variables and a development of non-linear calibration model. Chemom. Intell. Lab. Syst. 2001, 56:51-58.
    • (2001) Chemom. Intell. Lab. Syst. , vol.56 , pp. 51-58
    • Rantanen, J.1    Rasanen, E.2    Antikainen, O.3    Mannermaa, J.P.4    Yliruusi, J.5
  • 6
    • 33748323158 scopus 로고    scopus 로고
    • QSAR study of anti-HIV HEPT analogues based on multi-objective genetic programming and counter-propagation neural network
    • Arakawa M., Hasegawa K., Funatsu K. QSAR study of anti-HIV HEPT analogues based on multi-objective genetic programming and counter-propagation neural network. Chemom. Intell. Lab. Syst. 2006, 83:91-98.
    • (2006) Chemom. Intell. Lab. Syst. , vol.83 , pp. 91-98
    • Arakawa, M.1    Hasegawa, K.2    Funatsu, K.3
  • 7
    • 24044461725 scopus 로고    scopus 로고
    • A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction
    • Kim K., Lee J.M., Lee I.B. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemom. Intell. Lab. Syst. 2005, 79:22-30.
    • (2005) Chemom. Intell. Lab. Syst. , vol.79 , pp. 22-30
    • Kim, K.1    Lee, J.M.2    Lee, I.B.3
  • 8
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • Chen T., Morris J., Martin E. Gaussian process regression for multivariate spectroscopic calibration. Chemom. Intell. Lab. Syst. 2007, 87:59-67.
    • (2007) Chemom. Intell. Lab. Syst. , vol.87 , pp. 59-67
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 9
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its applications in chemistry
    • Li H.D., Liang Y.Z., Xu Q.S. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 2009, 95:188-198.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , pp. 188-198
    • Li, H.D.1    Liang, Y.Z.2    Xu, Q.S.3
  • 10
    • 0037841526 scopus 로고    scopus 로고
    • Cross-validation as the objective function for variable-selection techniques
    • Baumann K. Cross-validation as the objective function for variable-selection techniques. TrAC Trends Anal. Chem. 2003, 22:395-406.
    • (2003) TrAC Trends Anal. Chem. , vol.22 , pp. 395-406
    • Baumann, K.1
  • 12
    • 84884574602 scopus 로고    scopus 로고
    • Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation
    • Kaneko H., Funatsu K. Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation. J. Chem. Inf. Model. 2013, 53:2341-2348.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2341-2348
    • Kaneko, H.1    Funatsu, K.2
  • 13
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra J., Bengio Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13:281-305.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 15
    • 84899848188 scopus 로고    scopus 로고
    • Visualizing big data with compressed score plots: approach and research challenges
    • Camacho J. Visualizing big data with compressed score plots: approach and research challenges. Chemom. Intell. Lab. Syst. 2014, 135:110-125.
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 110-125
    • Camacho, J.1
  • 16
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17:113-126.
    • (2004) Neural Netw. , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 17
    • 67650469183 scopus 로고    scopus 로고
    • Efficient model selection for support vector machine with Gaussian kernel function
    • Tang Y., Guo W., Gao J. Efficient model selection for support vector machine with Gaussian kernel function. Proc. Comput. Intell. Data Min. 2009, 40-45.
    • (2009) Proc. Comput. Intell. Data Min. , pp. 40-45
    • Tang, Y.1    Guo, W.2    Gao, J.3
  • 18
    • 1542741028 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
    • Hou T.J., Xia K., Zhang W., Xu X.J. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci. 2004, 44:266-275.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 266-275
    • Hou, T.J.1    Xia, K.2    Zhang, W.3    Xu, X.J.4
  • 19
    • 84922670649 scopus 로고    scopus 로고
    • http://www.talete.mi.it/products/dragon_description.htm.
  • 20
    • 84922669046 scopus 로고    scopus 로고
    • http://www.cadaster.eu/node/65.
  • 22
    • 84922674724 scopus 로고    scopus 로고
    • http://www.csie.ntu.edu.tw/~cjlin/libsvm/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.