-
1
-
-
84952149204
-
A statistical view of some chemometrics regression tools
-
Frank I.E., Friedman J.H. A statistical view of some chemometrics regression tools. Technometrics 1993, 35:109-135.
-
(1993)
Technometrics
, vol.35
, pp. 109-135
-
-
Frank, I.E.1
Friedman, J.H.2
-
2
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 1996, 58:267-288.
-
(1996)
J. R. Stat. Soc.
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
3
-
-
45949123735
-
Principal component analysis
-
Wold S. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2:37-52.
-
(1987)
Chemom. Intell. Lab. Syst.
, vol.2
, pp. 37-52
-
-
Wold, S.1
-
5
-
-
0035897291
-
In-line moisture measurement during granulation with a four-wavelength near-infrared sensor: an evaluation of process-related variables and a development of non-linear calibration model
-
Rantanen J., Rasanen E., Antikainen O., Mannermaa J.P., Yliruusi J. In-line moisture measurement during granulation with a four-wavelength near-infrared sensor: an evaluation of process-related variables and a development of non-linear calibration model. Chemom. Intell. Lab. Syst. 2001, 56:51-58.
-
(2001)
Chemom. Intell. Lab. Syst.
, vol.56
, pp. 51-58
-
-
Rantanen, J.1
Rasanen, E.2
Antikainen, O.3
Mannermaa, J.P.4
Yliruusi, J.5
-
6
-
-
33748323158
-
QSAR study of anti-HIV HEPT analogues based on multi-objective genetic programming and counter-propagation neural network
-
Arakawa M., Hasegawa K., Funatsu K. QSAR study of anti-HIV HEPT analogues based on multi-objective genetic programming and counter-propagation neural network. Chemom. Intell. Lab. Syst. 2006, 83:91-98.
-
(2006)
Chemom. Intell. Lab. Syst.
, vol.83
, pp. 91-98
-
-
Arakawa, M.1
Hasegawa, K.2
Funatsu, K.3
-
7
-
-
24044461725
-
A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction
-
Kim K., Lee J.M., Lee I.B. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemom. Intell. Lab. Syst. 2005, 79:22-30.
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.79
, pp. 22-30
-
-
Kim, K.1
Lee, J.M.2
Lee, I.B.3
-
8
-
-
34247508683
-
Gaussian process regression for multivariate spectroscopic calibration
-
Chen T., Morris J., Martin E. Gaussian process regression for multivariate spectroscopic calibration. Chemom. Intell. Lab. Syst. 2007, 87:59-67.
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.87
, pp. 59-67
-
-
Chen, T.1
Morris, J.2
Martin, E.3
-
9
-
-
58149203252
-
Support vector machines and its applications in chemistry
-
Li H.D., Liang Y.Z., Xu Q.S. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 2009, 95:188-198.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.95
, pp. 188-198
-
-
Li, H.D.1
Liang, Y.Z.2
Xu, Q.S.3
-
10
-
-
0037841526
-
Cross-validation as the objective function for variable-selection techniques
-
Baumann K. Cross-validation as the objective function for variable-selection techniques. TrAC Trends Anal. Chem. 2003, 22:395-406.
-
(2003)
TrAC Trends Anal. Chem.
, vol.22
, pp. 395-406
-
-
Baumann, K.1
-
12
-
-
84884574602
-
Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation
-
Kaneko H., Funatsu K. Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation. J. Chem. Inf. Model. 2013, 53:2341-2348.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2341-2348
-
-
Kaneko, H.1
Funatsu, K.2
-
13
-
-
84857855190
-
Random search for hyper-parameter optimization
-
Bergstra J., Bengio Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13:281-305.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
14
-
-
51349115095
-
Big data: the future of biocuration
-
Howe D., Costanzo M., Fey P., Gojobori T., Hannick L., Hide W., Hill D.P., Kania R., Schaeffer M., St Pierre S., Twigger S., White O., Rhee S.Y. Big data: the future of biocuration. Nature 2008, 455:47-50.
-
(2008)
Nature
, vol.455
, pp. 47-50
-
-
Howe, D.1
Costanzo, M.2
Fey, P.3
Gojobori, T.4
Hannick, L.5
Hide, W.6
Hill, D.P.7
Kania, R.8
Schaeffer, M.9
St Pierre, S.10
Twigger, S.11
White, O.12
Rhee, S.Y.13
-
15
-
-
84899848188
-
Visualizing big data with compressed score plots: approach and research challenges
-
Camacho J. Visualizing big data with compressed score plots: approach and research challenges. Chemom. Intell. Lab. Syst. 2014, 135:110-125.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.135
, pp. 110-125
-
-
Camacho, J.1
-
16
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17:113-126.
-
(2004)
Neural Netw.
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
17
-
-
67650469183
-
Efficient model selection for support vector machine with Gaussian kernel function
-
Tang Y., Guo W., Gao J. Efficient model selection for support vector machine with Gaussian kernel function. Proc. Comput. Intell. Data Min. 2009, 40-45.
-
(2009)
Proc. Comput. Intell. Data Min.
, pp. 40-45
-
-
Tang, Y.1
Guo, W.2
Gao, J.3
-
18
-
-
1542741028
-
ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
-
Hou T.J., Xia K., Zhang W., Xu X.J. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci. 2004, 44:266-275.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 266-275
-
-
Hou, T.J.1
Xia, K.2
Zhang, W.3
Xu, X.J.4
-
19
-
-
84922670649
-
-
http://www.talete.mi.it/products/dragon_description.htm.
-
-
-
-
20
-
-
84922669046
-
-
http://www.cadaster.eu/node/65.
-
-
-
-
22
-
-
84922674724
-
-
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
-
-
-
|