메뉴 건너뛰기




Volumn 36, Issue 1, 2015, Pages 33-39

Spectral exponent characteristics of intracranial EEGs for epileptic seizure classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLASSIFICATION; DATA ANALYSIS; ELECTROENCEPHALOGRAM; ENTROPY; FRACTAL ANALYSIS; HUMAN; RECEIVER OPERATING CHARACTERISTIC; SEIZURE;

EID: 84922337318     PISSN: 19590318     EISSN: 18760988     Source Type: Journal    
DOI: 10.1016/j.irbm.2014.07.005     Document Type: Article
Times cited : (16)

References (32)
  • 1
    • 21044456146 scopus 로고    scopus 로고
    • National Institute of Neurological Disorders and Stroke (NINDS. Available
    • National Institute of Neurological Disorders and Stroke (NINDS). Seizure and epilepsy: ahope through research. Available: ahttp://www.ninds.nih.gov/disorders/epilepsy/detailepilepsy.htm, 2004
    • (2004) Seizure and Epilepsy: Ahope Through Research
  • 2
    • 84893227688 scopus 로고    scopus 로고
    • Epilepsy and its therapy: Present and future
    • Kovacs Z, Dobolyi A. Epilepsy and its therapy: Present and future. Curr Med Chem 2014; 6: 651
    • (2014) Curr Med Chem , vol.6 , pp. 651
    • Kovacs, Z.1    Dobolyi, A.2
  • 3
    • 77956214983 scopus 로고    scopus 로고
    • World Health Organization (WHOAvailable
    • World Health Organization (WHO). Epilepsy, 2010. Available: ahttp://www.who.int/mediacentre/factsheets/fs999/en/
    • (2010) Epilepsy
  • 5
    • 0034571545 scopus 로고    scopus 로고
    • Value of nonlinear time series analysis of the eeg in neocortical epilepsies
    • aWilliamson PD, Siegel AM, Roberts DW, Thadani VM, Gazzaniga MS, editors. Philadel-phia: aLippincott Williams & Wilkins
    • Elger CE, Widman G, Andrzejak R, Dumpelman M, Arnhold J, Grass-berger P, et al. Value of nonlinear time series analysis of the EEG in neocortical epilepsies. In: Williamson PD, Siegel AM, Roberts DW, Thadani VM, Gazzaniga MS, editors. Advances in neurology. Philadel-phia: aLippincott Williams & Wilkins; 2000
    • (2000) Advances in Neurology
    • Elger, C.E.1    Widman, G.2    Andrzejak, R.3    Dumpelman, M.4    Arnhold, J.5    Grass-Berger, P.6
  • 7
    • 2942605726 scopus 로고    scopus 로고
    • Scale-free dynamics of global functional connec-Tivity in the human brain
    • Stam CJ, de Bruin EA. Scale-free dynamics of global functional connec-Tivity in the human brain. Hum Brain Mapp 2004; 22: 97
    • (2004) Hum Brain Mapp , vol.22 , pp. 97
    • Stam, C.J.1    De Bruin, E.A.2
  • 8
    • 0035866052 scopus 로고    scopus 로고
    • Long-range temporal correlations and scaling behavior in human brain oscil-lations
    • Linkenkaer-Hansen K, Nikouline VV, Palva JM, IlmoniemiRJ. Long-range temporal correlations and scaling behavior in human brain oscil-lations. J Neurosci 2001; 21: 1370
    • (2001) J Neurosci , vol.21 , pp. 1370
    • Linkenkaer-Hansen, K.1    Nikouline, V.V.2    Palva, J.M.3    Ilmoniemi, R.J.4
  • 9
    • 0027680633 scopus 로고
    • Wavelet-based representations for the 1/ffamily of fractal processes
    • Wornell GW. Wavelet-based representations for the 1/ffamily of fractal processes. Proc IEEE 1993; 81: 1428
    • (1993) Proc IEEE , vol.81 , pp. 1428
    • Wornell, G.W.1
  • 11
    • 84906958312 scopus 로고    scopus 로고
    • Examination of scale-invariant characteristics of multi-channel ecog data for epileptic seizure localization
    • In press
    • Janjarasjitt S, Loparo KA. Examination of scale-invariant characteristics of multi-channel ECoG data for epileptic seizure localization. J Med Biol Eng. In press. http://dx.doi.org/10.5405/jmbe.1692
    • J Med Biol Eng
    • Janjarasjitt, S.1    Loparo, K.A.2
  • 14
    • 84891593593 scopus 로고    scopus 로고
    • Comparison of complexity measures using two complex system analysis methods applied to the epileptic ecog
    • JanjarasjittS, LoparoKA. Comparison of complexity measures using two complex system analysis methods applied to the epileptic ECoG. J Korean Phys Soc 2013; 63: 1659
    • (2013) J Korean Phys Soc , vol.63 , pp. 1659
    • Janjarasjitt, S.1    Loparo, K.A.2
  • 15
    • 84918832869 scopus 로고    scopus 로고
    • Scale-invariant behavior of epileptic ecog
    • In press
    • Janjarasjitt S, Loparo KA. Scale-invariant behavior of epileptic ECOG. JMed Biol Eng. In press. http://dx.doi.org/10.5405/jmbe.1433
    • JMed Biol Eng
    • Janjarasjitt, S.1    Loparo, K.A.2
  • 16
    • 84902356087 scopus 로고    scopus 로고
    • Examination of scale-invariant characteristics of epileptic electroencephalograms using wavelet-based analysis
    • Janjarasjitt S, Loparo KA. Examination of scale-invariant characteristics of epileptic electroencephalograms using wavelet-based analysis. Comput Electr Eng 2014; 40: 1766
    • (2014) Comput Electr Eng , vol.40 , pp. 1766
    • Janjarasjitt, S.1    Loparo, K.A.2
  • 18
    • 0035682573 scopus 로고    scopus 로고
    • In-dications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Adependence on recording region and brain state
    • 1
    • Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. In-dications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: adependence on recording region and brain state. Phys Rev E 2001; 64(061907): 1
    • (2001) Phys Rev e , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 19
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classi-fication of eeg signals using wavelet coefficients
    • Güler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classi-fication of EEG signals using wavelet coefficients. J Neurosci Methods 2005; 148: 113
    • (2005) J Neurosci Methods , vol.148 , pp. 113
    • Güler, I.1    Ubeyli, E.D.2
  • 20
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic eeg detection using artificial neural networks
    • Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 2007; 11: 288
    • (2007) IEEE Trans Inf Technol Biomed , vol.11 , pp. 288
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 21
    • 37349026733 scopus 로고    scopus 로고
    • Artificial immune recognition system with fuzzy re-source allocation mechanism classifier, principal component analysis and fft method based new hybrid automated identification system for classi-fication of eeg signals
    • Polat K, Günes S. Artificial immune recognition system with fuzzy re-source allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classi-fication of EEG signals. Expert Syst Appl 2008; 34: 2039
    • (2008) Expert Syst Appl , vol.34 , pp. 2039
    • Polat, K.1    Günes, S.2
  • 22
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan V, Eswaran C, Sriraam N. Artificial neural network based epileptic detection using time-domain and frequency-domain features. JMed Syst 2005; 29: 647
    • (2005) JMed Syst , vol.29 , pp. 647
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 23
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform eeg using a hybrid sys-Tem based on decision tree classifier and fast fourier transform
    • Polat K, Günes S. Classification of epileptiform EEG using a hybrid sys-Tem based on decision tree classifier and fast Fourier transform. Appl Math C 2007; 187: 1017
    • (2007) Appl Math C , vol.187 , pp. 1017
    • Polat, K.1    Günes, S.2
  • 24
    • 33751396389 scopus 로고    scopus 로고
    • Eeg signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 2007; 32: 1084
    • (2007) Expert Syst Appl , vol.32 , pp. 1084
    • Subasi, A.1
  • 26
    • 33751437697 scopus 로고    scopus 로고
    • Expert systems for time-varying biomedical signals using eigenvector methods
    • Güler I, Übeyli ED. Expert systems for time-varying biomedical signals using eigenvector methods. Expert Syst Appl 2007; 32: 1045
    • (2007) Expert Syst Appl , vol.32 , pp. 1045
    • Güler, I.1    Übeyli, E.D.2
  • 27
    • 33846095446 scopus 로고    scopus 로고
    • Features extracted by eigenvector methods for detect-ing variability of eeg signals
    • Übeyli ED, Güler I. Features extracted by eigenvector methods for detect-ing variability of EEG signals. Pattern Recognit Lett 2007; 28: 592
    • (2007) Pattern Recognit Lett , vol.28 , pp. 592
    • Übeyli, E.D.1    Güler, I.2
  • 28
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing lyapunov exponents for eeg signals classification
    • Güler NF, Übeyli ED, Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 2005; 29: 506
    • (2005) Expert Syst Appl , vol.29 , pp. 506
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 29
    • 0010026597 scopus 로고    scopus 로고
    • Fractal structure in the electroencephalogram
    • Watters PA. Fractal structure in the electroencephalogram. Complex Int 1998; 5
    • (1998) Complex Int , vol.5
    • Watters, P.A.1
  • 32
    • 84898477199 scopus 로고    scopus 로고
    • Computational validation of fractal characterization by using the wavelet-based fractal analysis
    • Janjarasitt S. Computational validation of fractal characterization by using the wavelet-based fractal analysis. J Korean Phys Soc 2014; 64: 780
    • (2014) J Korean Phys Soc , vol.64 , pp. 780
    • Janjarasitt, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.