-
1
-
-
27544502321
-
-
Churchill, Livingstone:
-
Miller, R. D., Eriksson, L. I., Fleisher, L. A., Wiener-Kronish, J. P., and Young, W. L., Miller′s Anesthesia 2 volume set, 7th edition. Churchill, Livingstone, 2010.
-
(2010)
Miller′s Anesthesia 2 volume set
-
-
Miller, R.D.1
Eriksson, L.I.2
Fleisher, L.A.3
Wiener-Kronish, J.P.4
Young, W.L.5
-
2
-
-
0019428559
-
Sevoflurane triggers malignant hypertermia in swine
-
Shulman, M., Braverman, B., and Ivankovich, A. D., Sevoflurane triggers malignant hypertermia in swine. Anesthesiology. 54(3):259–260, 1981.
-
(1981)
Anesthesiology
, vol.54
, Issue.3
, pp. 259-260
-
-
Shulman, M.1
Braverman, B.2
Ivankovich, A.D.3
-
3
-
-
84878718789
-
Monitoring the depth of anesthesia using entropy features and an artificial neural network
-
Shalbaf, R., Behnam, H., Sleigh, J. W., Steyn-Ross, A., and Voss, L. J., Monitoring the depth of anesthesia using entropy features and an artificial neural network. Journal of Neuroscience Methods. 218(1):17–24, 2013.
-
(2013)
Journal of Neuroscience Methods
, vol.218
, Issue.1
, pp. 17-24
-
-
Shalbaf, R.1
Behnam, H.2
Sleigh, J.W.3
Steyn-Ross, A.4
Voss, L.J.5
-
4
-
-
35348855033
-
E-Nose system for anesthetic dose level detection using artificial neural network
-
Saraoglu, H. M., and Edin, B., E-Nose system for anesthetic dose level detection using artificial neural network. Journal of Medical Systems. 31(6):475–482, 2007.
-
(2007)
Journal of Medical Systems
, vol.31
, Issue.6
, pp. 475-482
-
-
Saraoglu, H.M.1
Edin, B.2
-
5
-
-
35348847831
-
A fuzzy logic-based decision support system on anesthetic depth control for helping anesthetists in surgeries
-
Saraoglu, H. M., and Sanli, S., A fuzzy logic-based decision support system on anesthetic depth control for helping anesthetists in surgeries. Journal of Medical Systems. 31(6):511–519, 2007.
-
(2007)
Journal of Medical Systems
, vol.31
, Issue.6
, pp. 511-519
-
-
Saraoglu, H.M.1
Sanli, S.2
-
6
-
-
77957600861
-
Estimation of medicine amount used anesthesia by an artificial neural network
-
Gunturkun, R., Estimation of medicine amount used anesthesia by an artificial neural network. Journal of Medical Systems. 34(5):941–946, 2010.
-
(2010)
Journal of Medical Systems
, vol.34
, Issue.5
, pp. 941-946
-
-
Gunturkun, R.1
-
7
-
-
0033843333
-
Development of a decision support system to assist anesthesiologists in operating room
-
Krol, M., and Reich, D. L., Development of a decision support system to assist anesthesiologists in operating room. Journal of Medical Systems. 24(3):141–146, 2000.
-
(2000)
Journal of Medical Systems
, vol.24
, Issue.3
, pp. 141-146
-
-
Krol, M.1
Reich, D.L.2
-
8
-
-
84922302600
-
Determining the depth of anesthesia by the analysis of EEG signals, Istanbul University
-
Gürkan, G., Determining the depth of anesthesia by the analysis of EEG signals, Istanbul University, PhD Thesis. 2011.
-
(2011)
PhD Thesis
-
-
Gürkan, G.1
-
9
-
-
10944222205
-
Anesthetic management and one-year mortality after noncardiac surgery
-
Monk, T. G., Saini, V., Weldon, B. C., and Sigl, J. C., Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 100(1):4–102, 2005.
-
(2005)
Anesth Analg
, vol.100
, Issue.1
, pp. 4-102
-
-
Monk, T.G.1
Saini, V.2
Weldon, B.C.3
Sigl, J.C.4
-
10
-
-
2542562742
-
Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial
-
Myles, P. S., Leslie, K., McNeil, J., Forbes, A., and Chan, M. T. V., Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. The Lancet. 363(9423):1757–1763, 2004.
-
(2004)
The Lancet
, vol.363
, Issue.9423
, pp. 1757-1763
-
-
Myles, P.S.1
Leslie, K.2
McNeil, J.3
Forbes, A.4
Chan, M.T.V.5
-
11
-
-
67649512924
-
Bispectral index for improving anesthetic delivery and postoperative recovery
-
Punjasawadwong, Y., Boonjeungmonkol, N., and Phongchiewboon, A., Bispectral index for improving anesthetic delivery and postoperative recovery. Anesthesia & Analgesia 106(4):1326, 2008.
-
(2008)
Anesthesia & Analgesia
, vol.106
, Issue.4
, pp. 1326
-
-
Punjasawadwong, Y.1
Boonjeungmonkol, N.2
Phongchiewboon, A.3
-
12
-
-
0031028285
-
Electroencephalographic bispectral index correlates with intraoperative recall and depth of propofol-induced sedation
-
Liu, J., Singh, H., and White, P. F., Electroencephalographic bispectral index correlates with intraoperative recall and depth of propofol-induced sedation. Anesth Analg 84(1):185–9, 1997.
-
(1997)
Anesth Analg
, vol.84
, Issue.1
, pp. 185-189
-
-
Liu, J.1
Singh, H.2
White, P.F.3
-
13
-
-
84857646016
-
Brain monitoring with electroencephalography and the electroencephalogram-derived bispectral index during cardiac surgery
-
Kertai, M. D., Whitlock, E. L., and Avidan, M. S., Brain monitoring with electroencephalography and the electroencephalogram-derived bispectral index during cardiac surgery. Anesthesia and Analgesia. 114(3):533–546, 2012.
-
(2012)
Anesthesia and Analgesia
, vol.114
, Issue.3
, pp. 533-546
-
-
Kertai, M.D.1
Whitlock, E.L.2
Avidan, M.S.3
-
14
-
-
84868377291
-
A wavelet-based estimating depth of anesthesia
-
Zoughi, T., Boostani, R., and Deypir, M., A wavelet-based estimating depth of anesthesia. Engineering Applications of Artificial Intelligence. 25(8):1710–1722, 2012.
-
(2012)
Engineering Applications of Artificial Intelligence
, vol.25
, Issue.8
, pp. 1710-1722
-
-
Zoughi, T.1
Boostani, R.2
Deypir, M.3
-
16
-
-
67549117130
-
Neural network implementation using CUDA and OpenMP
-
Jang, H., Park, A., and Jung, K., Neural network implementation using CUDA and OpenMP. Digital Image Computing: Techniques and Applications (DICTA), pp. 155-161, 2008.
-
(2008)
Digital Image Computing: Techniques and Applications (DICTA)
, pp. 155-161
-
-
Jang, H.1
Park, A.2
Jung, K.3
-
17
-
-
79952372930
-
Parallel training of a back-propagation neural network using CUDA
-
Canto, X. S., Ramirez, F. M., and Cetina, V. U., Parallel training of a back-propagation neural network using CUDA. ICMLA, pp. 307-312, 2010.
-
(2010)
ICMLA
, pp. 307-312
-
-
Canto, X.S.1
Ramirez, F.M.2
Cetina, V.U.3
-
18
-
-
76249087378
-
Accelerating multi-layer perceptron based short term demand forecasting using graphics processing units
-
He, T., Dong, Z., Meng, K., Wang, H., and Oh, Y., Accelerating multi-layer perceptron based short term demand forecasting using graphics processing units, In: Transmission & Distribution Conference & Exposition: Asia and Pacific, pp. 1-4, 2009.
-
(2009)
Transmission & Distribution Conference & Exposition: Asia and Pacific
, pp. 1-4
-
-
He, T.1
Dong, Z.2
Meng, K.3
Wang, H.4
Oh, Y.5
-
19
-
-
77953134104
-
High performance pattern recognition on GPU
-
Lahabar, S., Agrawal, P., and Narayanan, P. J., High performance pattern recognition on GPU. In: National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG’08), pp. 154-159, 2008.
-
(2008)
National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG’08)
, pp. 154-159
-
-
Lahabar, S.1
Agrawal, P.2
Narayanan, P.J.3
-
20
-
-
84922302599
-
-
Kelesoglu, O., and Akarsu, E. E., Determination of annual heat loss and requirement of energy in a reinforced concrete building by artificial neural networks, e-Journal of New World Sciences Academy Natural and Applied Sciences, 3(2):381-390, 2008.
-
(2008)
Determination of annual heat loss and requirement of energy in a reinforced concrete building by artificial neural networks, e-Journal of New World Sciences Academy Natural and Applied Sciences, 3(2):381-390
-
-
Kelesoglu, O.1
Akarsu, E.E.2
-
21
-
-
84874729521
-
Intelligent medical disease diagnosis using improved hybrid genetic algorithm - multilayer perceptron network
-
Ahmad, F., Mat Isa, N. A., Hussain, Z., and Osman, M. K., Intelligent medical disease diagnosis using improved hybrid genetic algorithm - multilayer perceptron network. Journal of Medical Systems. 37(2):1–8, 2013.
-
(2013)
Journal of Medical Systems
, vol.37
, Issue.2
, pp. 1-8
-
-
Ahmad, F.1
Mat Isa, N.A.2
Hussain, Z.3
Osman, M.K.4
-
22
-
-
84889570242
-
Novel approaches for automated epileptic diagnosis using FCBF feature selection and classification algorithms
-
Sen, B., and Peker, M., Novel approaches for automated epileptic diagnosis using FCBF feature selection and classification algorithms. Turkish Journal of Electrical Engineering & Computer Sciences. 21:2092–2109, 2013.
-
(2013)
Turkish Journal of Electrical Engineering & Computer Sciences
, vol.21
, pp. 2092-2109
-
-
Sen, B.1
Peker, M.2
-
23
-
-
84895092631
-
-
Sen, B., Peker, M., Celebi, F.V., and Cavusoglu, A
-
Sen, B., Peker, M., Celebi, F.V., and Cavusoglu, A., A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. Journal of Medical Systems. 38(18), doi: 10.1007/s10916-014-0018-0, 2014.
-
A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. Journal of Medical Systems
-
-
-
24
-
-
84922302597
-
-
Nvidia GeForce GF106, http://www.tomshardware.com/reviews/geforce-gts-450-gf106-radeon-hd-5750,2734.html (Accessed: 24.10.2014)
-
Nvidia GeForce GF106
-
-
-
25
-
-
79952234640
-
Accelerating BP neural network-based image compression by CPU and GPU cooperation
-
Lin, J., and Lin, J., Accelerating BP neural network-based image compression by CPU and GPU cooperation. International Conference on Multimedia Technology. pp. 40–44, 2010.
-
(2010)
International Conference on Multimedia Technology
, pp. 40-44
-
-
Lin, J.1
Lin, J.2
-
27
-
-
35348925297
-
EEG based automated detection of anesthetic levels using a recurrent artificial neural network
-
Srinivasan, V., Eswaran, C., and Sriraam, N., EEG based automated detection of anesthetic levels using a recurrent artificial neural network. International Journal of Bioelectromagnetism. 7:267–270, 2005.
-
(2005)
International Journal of Bioelectromagnetism
, vol.7
, pp. 267-270
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
28
-
-
0035200464
-
EEG complexity as a measure of depth of anesthesia for patients
-
Zhang, X. S., Roy, R. J., and Jensen, E. W., EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering. 48(12):1424–33, 2001.
-
(2001)
IEEE Transactions on Biomedical Engineering
, vol.48
, Issue.12
, pp. 1424-1433
-
-
Zhang, X.S.1
Roy, R.J.2
Jensen, E.W.3
-
29
-
-
84858734562
-
EEG-based automatic classification of ‘awake’ versus ‘anesthetized’ state in general anesthesia using granger causality
-
Nicolaou, N., Hourris, S., Alexandrou, P., and Georgiou, J., EEG-based automatic classification of ‘awake’ versus ‘anesthetized’ state in general anesthesia using granger causality. PLoS ONE. 7(3):e33869, 2012. doi:10.1371/journal.pone.0033869.
-
(2012)
PLoS ONE
, vol.7
, Issue.3
, pp. 33869
-
-
Nicolaou, N.1
Hourris, S.2
Alexandrou, P.3
Georgiou, J.4
-
30
-
-
51149098963
-
Estimating the depth of anesthesia using fuzzy soft computation applied to EEG features
-
Esmaeili, V., Assareh, A., Shamsollahi, M. B., Moradi, M. H., and Arefian, N. M., Estimating the depth of anesthesia using fuzzy soft computation applied to EEG features. Intelligent Data Analysis. 12(4):393–407, 2008.
-
(2008)
Intelligent Data Analysis
, vol.12
, Issue.4
, pp. 393-407
-
-
Esmaeili, V.1
Assareh, A.2
Shamsollahi, M.B.3
Moradi, M.H.4
Arefian, N.M.5
-
31
-
-
35348842136
-
Automated detection of anesthetic depth levels using chaotic features with artificial neural networks
-
Lalitha, V., and Eswaran, C., Automated detection of anesthetic depth levels using chaotic features with artificial neural networks. Journal of Medical Systems. 31(6):445–452, 2007.
-
(2007)
Journal of Medical Systems
, vol.31
, Issue.6
, pp. 445-452
-
-
Lalitha, V.1
Eswaran, C.2
-
32
-
-
84940649942
-
-
Rabbani, H., Dehnavi, A. M., and Ghanatbari, M., Estimation the depth of anesthesia by the use of artificial neural network. Artificial Neural Networks - Methodological Advances and Biomedical Applications, 2011. doi:10.5772/15139.
-
(2011)
Estimation the depth of anesthesia by the use of artificial neural network. Artificial Neural Networks - Methodological Advances and Biomedical Applications
-
-
Rabbani, H.1
Dehnavi, A.M.2
Ghanatbari, M.3
|