메뉴 건너뛰기




Volumn 34, Issue 6, 2015, Pages 1041-1058

Growth mixture modeling with non-normal distributions

Author keywords

Body mass index; Skew t distribution; Survival; Trajectory classes

Indexed keywords

AGE DISTRIBUTION; ARTICLE; BODY MASS; DATA ANALYSIS; GROWTH MIXTURE MODELING; GROWTH RATE; HUMAN; HYPERTENSION; INTERMETHOD COMPARISON; LONGITUDINAL STUDY; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; NONNORMAL DISTRIBUTION; OUTCOME ASSESSMENT; PROCESS DEVELOPMENT; PROCESS MODEL; RISK ASSESSMENT; RISK FACTOR; RISK REDUCTION; SCORING SYSTEM; STATISTICAL DISTRIBUTION; SURVIVAL RATE; ADOLESCENT; ADULT; AFRICAN AMERICAN; AGED; CHILD; FEMALE; MALE; MIDDLE AGED; MONTE CARLO METHOD; PROPORTIONAL HAZARDS MODEL; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; SURVIVAL; YOUNG ADULT;

EID: 84922236834     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6388     Document Type: Article
Times cited : (70)

References (27)
  • 1
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 3
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random effects population
    • Verbeke G, Lesaffre E. A linear mixed-effects model with heterogeneity in the random effects population. Journal of the American Statistical Association 1996; 91:217-221.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 4
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthén B, Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 1999; 55:463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 5
    • 21144468543 scopus 로고
    • Age, criminal careers, and population heterogeneity: specification and estimation of a nonparametric, mixed Poisson model
    • Nagin DS, Land KC. Age, criminal careers, and population heterogeneity: specification and estimation of a nonparametric, mixed Poisson model. Criminology 1993; 31:327-362.
    • (1993) Criminology , vol.31 , pp. 327-362
    • Nagin, D.S.1    Land, K.C.2
  • 7
    • 0034733016 scopus 로고    scopus 로고
    • A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations
    • Lin H, McCulloch CE, Turnbull BW, Slate E, Clark LC. A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations. Statistics in Medicine 2000; 19(10): 1303-1318.
    • (2000) Statistics in Medicine , vol.19 , Issue.10 , pp. 1303-1318
    • Lin, H.1    McCulloch, C.E.2    Turnbull, B.W.3    Slate, E.4    Clark, L.C.5
  • 8
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer
    • Lin H, Turnbull BW, McCulloch CE, Slate E. Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association 2002; 97:53-65.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 53-65
    • Lin, H.1    Turnbull, B.W.2    McCulloch, C.E.3    Slate, E.4
  • 9
    • 70449359832 scopus 로고    scopus 로고
    • Estimating drug effects in the presence of placebo response: causal inference using growth mixture modeling
    • Muthén B, Brown H. Estimating drug effects in the presence of placebo response: causal inference using growth mixture modeling. Statistics in Medicine 2009; 28:3363-3385.
    • (2009) Statistics in Medicine , vol.28 , pp. 3363-3385
    • Muthén, B.1    Brown, H.2
  • 10
    • 84995346800 scopus 로고    scopus 로고
    • Growth mixture modeling: analysis with non-Gaussian random effects
    • In, Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds.) Chapman & Hall/CRC Press: Boca Raton
    • Muthén B, Asparouhov T, Growth mixture modeling: analysis with non-Gaussian random effects. In Longitudinal Data Analysis, Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds.) Chapman & Hall/CRC Press: Boca Raton, 2009; 143-165.
    • (2009) Longitudinal Data Analysis , pp. 143-165
    • Muthén, B.1    Asparouhov, T.2
  • 11
    • 79952582418 scopus 로고    scopus 로고
    • Growth modeling with non-ignorable dropout: alternative analyses of the STAR*D antidepressant trial
    • Muthén B, Asparouhov T, Hunter A, Leuchter A. Growth modeling with non-ignorable dropout: alternative analyses of the STAR*D antidepressant trial. Psychological Methods 2011; 16:17-33.
    • (2011) Psychological Methods , vol.16 , pp. 17-33
    • Muthén, B.1    Asparouhov, T.2    Hunter, A.3    Leuchter, A.4
  • 12
    • 84906859103 scopus 로고    scopus 로고
    • Breaking bad: two decades of life-course data analysis in criminology, developmental psychology, and beyond
    • Erosheva EA, Matsueda RL, Telesca D. Breaking bad: two decades of life-course data analysis in criminology, developmental psychology, and beyond. Annual Review of Statistics and its Applications 2014; 1:301-332.
    • (2014) Annual Review of Statistics and its Applications , vol.1 , pp. 301-332
    • Erosheva, E.A.1    Matsueda, R.L.2    Telesca, D.3
  • 15
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes
    • Bauer DJ, Curran PJ. Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. Psychological Methods 2003; 8:338-363.
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 16
    • 84922269545 scopus 로고    scopus 로고
    • The skew-t factor analysis model
    • Submitted. Available from:[accessed on 4 December 2014].
    • Lin T, Wu PH, McLachlan GJ, Lee SX. The skew-t factor analysis model. Submitted. Available from: http://arxiv.org/abs/1310.5336 [accessed on 4 December 2014].
    • Lin, T.1    Wu, P.H.2    McLachlan, G.J.3    Lee, S.X.4
  • 17
    • 84893974463 scopus 로고    scopus 로고
    • Finite mixtures of multivariate skew t-distributions: some recent and new results
    • Lee S, McLachlan GJ. Finite mixtures of multivariate skew t-distributions: some recent and new results. Journal of Statistics and Computing 2014; 24:181-202.
    • (2014) Journal of Statistics and Computing , vol.24 , pp. 181-202
    • Lee, S.1    McLachlan, G.J.2
  • 19
    • 84901924035 scopus 로고    scopus 로고
    • Bayesian analysis of nonlinear mixed-effects mixture models for longitudinal data with heterogeneity and skewness
    • Lu X, Huang Y. Bayesian analysis of nonlinear mixed-effects mixture models for longitudinal data with heterogeneity and skewness. Statistics in Medicine 2014; 33:2701-2880.
    • (2014) Statistics in Medicine , vol.33 , pp. 2701-2880
    • Lu, X.1    Huang, Y.2
  • 22
    • 1642358200 scopus 로고    scopus 로고
    • Joint analysis of time-to-event and multiple binary indicators of latent classes
    • Larsen K. Joint analysis of time-to-event and multiple binary indicators of latent classes. Biometrics 2004; 60(1): 85-92.
    • (2004) Biometrics , vol.60 , Issue.1 , pp. 85-92
    • Larsen, K.1
  • 23
    • 84922218670 scopus 로고    scopus 로고
    • Continuous time survival in latent variable models. Proceedings of the Joint Statistical Meeting in Seattle, August 2006. ASA section on Biometrics, Seattle, Washington
    • Asparouhov T, Masyn K, Muthén B. Continuous time survival in latent variable models. Proceedings of the Joint Statistical Meeting in Seattle, August 2006. ASA section on Biometrics, Seattle, Washington, 2006; 180-187.
    • (2006) , pp. 180-187
    • Asparouhov, T.1    Masyn, K.2    Muthén, B.3
  • 24
    • 0003753978 scopus 로고    scopus 로고
    • Seventh Edition. Muthén & Muthén: Los Angeles, CA
    • Muthén L, Muthén B. Mplus User's Guide Seventh Edition. Muthén & Muthén: Los Angeles, CA, 2012.
    • (2012) Mplus User's Guide
    • Muthén, L.1    Muthén, B.2
  • 27
    • 84864664325 scopus 로고    scopus 로고
    • Applications of continuous-time survival in latent variable models for the analysis of oncology randomized clinical trial data using Mplus,
    • Technical Report 2009. Available from: [accessed on 4 December 2014].
    • Muthén B, Asparouhov T, Boye M, Hackshaw M, Naegeli A. Applications of continuous-time survival in latent variable models for the analysis of oncology randomized clinical trial data using Mplus, Technical Report 2009. Available from: wwww.statmodel.com [accessed on 4 December 2014].
    • Muthén, B.1    Asparouhov, T.2    Boye, M.3    Hackshaw, M.4    Naegeli, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.