메뉴 건너뛰기




Volumn 28, Issue 27, 2009, Pages 3363-3385

Estimating drug effects in the presence of placebo response: Causal inference using growth mixture modeling

Author keywords

Latent classes; Potential outcomes; Principal stratification; Trajectory types

Indexed keywords

FLUOXETINE; IMIPRAMINE; PLACEBO;

EID: 70449359832     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3721     Document Type: Article
Times cited : (70)

References (30)
  • 1
    • 0034057519 scopus 로고    scopus 로고
    • A placebo-controlled study of fluoxetine versus imipramine in the acute treatment of atypical depression
    • DOI 10.1176/appi.ajp.157.3.344
    • McGrath P, Stewart JW, Janal MN, Petkova E, Quitkin FM, Klein DF. A placebo-controlled study of fluoxetine versus imipramine in the acute treatment of atypical depression. American Journal of Psychiatry 2000; 157: 344-350. (Pubitemid 30145918)
    • (2000) American Journal of Psychiatry , vol.157 , Issue.3 , pp. 344-350
    • McGrath, P.J.1    Stewart, J.W.2    Janal, M.N.3    Petkova, E.4    Quitkin, F.M.5    Klein, D.F.6
  • 2
    • 0000467740 scopus 로고
    • Clinically relevant effect sizes in depression
    • Montgomery SS. Clinically relevant effect sizes in depression. European Neuropsychopharmacology 1994; 4: 283-284.
    • (1994) European Neuropsychopharmacology , vol.4 , pp. 283-284
    • Montgomery, S.S.1
  • 5
    • 84936109202 scopus 로고
    • Causal inference, path analysis, and recursive structural equations models
    • Clogg C (ed.). American Sociological Association: Washington, DC
    • Holland P. Causal inference, path analysis, and recursive structural equations models. In Sociological Methodology, Clogg C (ed.). American Sociological Association: Washington, DC, 1988; 449-493.
    • (1988) Sociological Methodology , pp. 449-493
    • Holland, P.1
  • 6
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 1974; 66:688-701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 7
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects
    • Rubin DB. Bayesian inference for causal effects. The Annuals of Statistics 1978; 6:34-58.
    • (1978) The Annuals of Statistics , vol.6 , pp. 34-58
    • Rubin, D.B.1
  • 8
    • 0036188782 scopus 로고    scopus 로고
    • Principal stratification in causal inference
    • Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics 2002; 58:21-29.
    • (2002) Biometrics , vol.58 , pp. 21-29
    • Frangakis, C.E.1    Rubin, D.B.2
  • 9
    • 0032365866 scopus 로고    scopus 로고
    • Statistical Techniques for Analyzing Data from Prevention Trials: Treatment of No-Shows Using Rubin's Causal Model
    • DOI 10.1037//1082-989X.3.2.147
    • Little RJ, Yau LHY. Statistical techniques for analyzing data from prevention trials: treatment of no-shows using Rubin's causal model. Psychological Methods 1998; 3:147-159. (Pubitemid 128100918)
    • (1998) Psychological Methods , vol.3 , Issue.2 , pp. 147-159
    • Little, R.J.1    Yau, L.H.Y.2
  • 10
    • 0024241516 scopus 로고
    • Random regression models: A comprehensive approach to the analysis of longitudinal psychiatric data
    • Gibbons RD, Hedeker D, Waternaux C, Davis JM. Random regression models: a comprehensive approach to the analysis of longitudinal psychiatric data. Psychopharmacology Bulletin 1988; 24:438-443. (Pubitemid 19031632)
    • (1988) Psychopharmacology Bulletin , vol.24 , Issue.3 , pp. 438-443
    • Gibbons, R.D.1    Hedeker, D.2    Waternaux, C.3    Davis, J.M.4
  • 11
    • 0021277596 scopus 로고
    • Identification of true drug response to antidepressants. Use of pattern analysis
    • Quitkin FM, Rabkin JG, Ross D, Stewart JW. Identification of true drug response to antidepressants. Use of pattern analysis. Archives of General Psychiatry 1984; 41:782-786. (Pubitemid 14092257)
    • (1984) Archives of General Psychiatry , vol.41 , Issue.8 , pp. 782-786
    • Quitkin, F.M.1    Rabkin, J.G.2    Ross, D.3
  • 13
    • 84995346800 scopus 로고    scopus 로고
    • Growth mixture modeling: Analysis with non-Gaussian random effects
    • Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds). Chapman & Hall/CRC Press: Boca Raton, FL
    • Muthén B, Asparouhov T. Growth mixture modeling: analysis with non-Gaussian random effects. In Longitudinal Data Analysis, Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds). Chapman & Hall/CRC Press: Boca Raton, FL, 2008; 143-165.
    • (2008) Longitudinal Data Analysis , pp. 143-165
    • Muthén, B.1    Asparouhov, T.2
  • 14
    • 2942562549 scopus 로고    scopus 로고
    • Direct and indirect causal effects via potential outcomes
    • Rubin DB. Direct and indirect causal effects via potential outcomes. Scandinavian Journal of Statistics 2004; 31:161-170.
    • (2004) Scandinavian Journal of Statistics , vol.31 , pp. 161-170
    • Rubin, D.B.1
  • 15
    • 6944251229 scopus 로고    scopus 로고
    • Analyzing a randomized trial on breast self-examination with noncompliance and missing outcomes
    • DOI 10.1093/biostatistics/5.2.207
    • Mealli F, Imbens GW, Ferro S, Biggeri A. Analyzing a randomized trial on breast self-examination with noncompliance and missing outcomes. Biostatistics 2004; 5:207-222. (Pubitemid 41180224)
    • (2004) Biostatistics , vol.5 , Issue.2 , pp. 207-222
    • Mealli, F.1    Imbens, G.W.2    Ferro, S.3    Biggeri, A.4
  • 19
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthén B, Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 1999; 55:463-469. (Pubitemid 29302570)
    • (1999) Biometrics , vol.55 , Issue.2 , pp. 463-469
    • Muthen, B.1    Shedden, K.2
  • 20
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer
    • Lin H, Turnbull BW, McCulloch CE, Slate E. Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association 2002; 97:53-65.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 53-65
    • Lin, H.1    Turnbull, B.W.2    McCulloch, C.E.3    Slate, E.4
  • 21
    • 21644459666 scopus 로고    scopus 로고
    • Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction
    • Elliott MR, Gallo JJ, Ten Have TR, Bogner HR, Katz IR. Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction. Biostatistics 2005; 6:119-143.
    • (2005) Biostatistics , vol.6 , pp. 119-143
    • Elliott, M.R.1    Gallo, J.J.2    Ten Have, T.R.3    Bogner, H.R.4    Katz, I.R.5
  • 22
    • 39849089597 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal Gaussian data
    • DOI 10.1111/j.1541-0420.2007.00837.x
    • Beunckens C, Molenberghs G, Verbeke G, Mallinckrodt C. A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 2008; 64:96-105. (Pubitemid 351316868)
    • (2008) Biometrics , vol.64 , Issue.1 , pp. 96-105
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 24
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978; 6:461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 26
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling. A Monte Carlo simulation study
    • Nylund KL, Asparouhov T, Muthén B. Deciding on the number of classes in latent class analysis and growth mixture modeling. A Monte Carlo simulation study. Structural Equation Modeling 2007; 14:535-569.
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.3
  • 27
    • 21144468655 scopus 로고
    • An empirical pooling approach for estimating marketing mix elasticities with PIMS data
    • Ramaswamy V, DeSarbo W, Reibstein D, Robinson W. An empirical pooling approach for estimating marketing mix elasticities with PIMS data. Marketing Science 1993; 12:103-124.
    • (1993) Marketing Science , vol.12 , pp. 103-124
    • Ramaswamy, V.1    Desarbo, W.2    Reibstein, D.3    Robinson, W.4
  • 28
    • 1142265326 scopus 로고    scopus 로고
    • Profiling Placebo Responders by Self-Consistent Partitioning of Functional Data
    • DOI 10.1198/016214503000000783
    • Tarpey T, Petkova E, Ogden T. Profiling placebo responders by self-consistent partitioning of functional data. Journal of the American Statistical Association 2003; 98:850-858. (Pubitemid 38213974)
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.464 , pp. 850-858
    • Tarpey, T.1    Petkova, E.2    Ogden, R.T.3
  • 30
    • 0035560470 scopus 로고    scopus 로고
    • A random-effects mixture model for classifying treatment response in longitudinal clinical trials
    • DOI 10.1081/BIP-120006091
    • Xu W, Hedeker D. A random-effects mixture model for classifying treatment response in longitudinal clinical trials. Journal of Biopharmaceutical Statistics 2001; 11:253-273. (Pubitemid 34532645)
    • (2001) Journal of Biopharmaceutical Statistics , vol.11 , Issue.4 , pp. 253-273
    • Xu, W.1    Hedeker, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.