메뉴 건너뛰기




Volumn 8, Issue JAN, 2015, Pages 1-8

Structural homeostasis in the nervous system: A balancing act for wiring plasticity and stability

Author keywords

Activity dependent plasticity; Homeostasis; Neural development; Neuronal morphology; Structural plasticity

Indexed keywords

AMPA RECEPTOR; INWARDLY RECTIFYING POTASSIUM CHANNEL SUBUNIT KIR2.1; N METHYL DEXTRO ASPARTIC ACID RECEPTOR; NEUROPEPTIDE Y; RHODOPSIN;

EID: 84921856558     PISSN: 16625102     EISSN: None     Source Type: Journal    
DOI: 10.3389/fncel.2014.00439     Document Type: Review
Times cited : (53)

References (69)
  • 1
    • 3843152886 scopus 로고    scopus 로고
    • Coordinating structural and functional synapse development: Postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology
    • Albin, S. D., and Davis, G. W. (2004). Coordinating structural and functional synapse development: postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology. J. Neurosci. 24, 6871-6879. doi: 10. 1523/jneurosci. 1538-04. 2004.
    • (2004) J. Neurosci , vol.24 , pp. 6871-6879
    • Albin, S.D.1    Davis, G.W.2
  • 2
    • 0027240404 scopus 로고
    • Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade
    • Antonini, A., and Stryker, M. P. (1993). Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J. Neurosci. 13, 3549-3573.
    • (1993) J. Neurosci , vol.13 , pp. 3549-3573
    • Antonini, A.1    Stryker, M.P.2
  • 3
    • 77957313794 scopus 로고    scopus 로고
    • Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons
    • Appelbaum, L., Wang, G., Yokogawa, T., Skariah, G. M., Smith, S. J., Mourrain, P., et al. (2010). Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 68, 87-98. doi: 10. 1016/j. neuron. 2010. 09. 006.
    • (2010) Neuron , vol.68 , pp. 87-98
    • Appelbaum, L.1    Wang, G.2    Yokogawa, T.3    Skariah, G.M.4    Smith, S.J.5    Mourrain, P.6
  • 4
    • 84855309347 scopus 로고    scopus 로고
    • Genetic and cognitive windows into circuit mechanisms of psychiatric disease
    • Arguello, P. A., and Gogos, J. A. (2012). Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci. 35, 3-13. doi: 10. 1016/j. tins. 2011. 11. 007.
    • (2012) Trends Neurosci , vol.35 , pp. 3-13
    • Arguello, P.A.1    Gogos, J.A.2
  • 5
    • 0037191791 scopus 로고    scopus 로고
    • Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons
    • Burrone, J., O'Byrne, M., and Murthy, V. N. (2002). Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414-418. doi: 10. 1038/nature01242.
    • (2002) Nature , vol.420 , pp. 414-418
    • Burrone, J.1    O'Byrne, M.2    Murthy, V.N.3
  • 6
    • 79959532384 scopus 로고    scopus 로고
    • Sleep and synaptic homeostasis: Structural evidence in Drosophila
    • Bushey, D., Tononi, G., and Cirelli, C. (2011). Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332, 1576-1581. doi: 10. 1126/science. 1202839.
    • (2011) Science , vol.332 , pp. 1576-1581
    • Bushey, D.1    Tononi, G.2    Cirelli, C.3
  • 7
    • 77957043222 scopus 로고    scopus 로고
    • A model for cortical rewiring following deafferentation and focal stroke
    • Butz, M., van Ooyen, A., and Wörgötter, F. (2009a). A model for cortical rewiring following deafferentation and focal stroke. Front. Comput. Neurosci. 3: 10. doi: 10. 3389/neuro. 10. 010. 2009.
    • (2009) Front. Comput. Neurosci , vol.3
    • Butz, M.1    van Ooyen, A.2    Wörgötter, F.3
  • 8
    • 67349114846 scopus 로고    scopus 로고
    • Activity-dependent structural plasticity
    • Butz, M., Wörgötter, F., and van Ooyen, A. (2009b). Activity-dependent structural plasticity. Brain Res. Rev. 60, 287-305. doi: 10. 1016/j. brainresrev. 2008. 12. 023.
    • (2009) Brain Res. Rev , vol.60 , pp. 287-305
    • Butz, M.1    Wörgötter, F.2    van Ooyen, A.3
  • 9
    • 84877153207 scopus 로고    scopus 로고
    • Neuronal plasticity and antidepressant actions
    • Castrén, E., and Hen, R. (2013). Neuronal plasticity and antidepressant actions. Trends Neurosci. 36, 259-267. doi: 10. 1016/j. tins. 2012. 12. 010.
    • (2013) Trends Neurosci , vol.36 , pp. 259-267
    • Castrén, E.1    Hen, R.2
  • 10
    • 84866493897 scopus 로고    scopus 로고
    • Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity
    • Chauvette, S., Seigneur, J., and Timofeev, I. (2012). Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75, 1105-1113. doi: 10. 1016/j. neuron. 2012. 08. 034.
    • (2012) Neuron , vol.75 , pp. 1105-1113
    • Chauvette, S.1    Seigneur, J.2    Timofeev, I.3
  • 11
    • 79955484822 scopus 로고    scopus 로고
    • Structural basis for the role of inhibition in facilitating adult brain plasticity
    • Chen, J. L., Lin, W. C., Cha, J. W., So, P. T., Kubota, Y., and Nedivi, E. (2011). Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat. Neurosci. 14, 587-594. doi: 10. 1038/nn. 2799.
    • (2011) Nat. Neurosci , vol.14 , pp. 587-594
    • Chen, J.L.1    Lin, W.C.2    Cha, J.W.3    So, P.T.4    Kubota, Y.5    Nedivi, E.6
  • 12
    • 84860274120 scopus 로고    scopus 로고
    • Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex
    • Chen, J. L., Villa, K. L., Cha, J. W., So, P. T., Kubota, Y., and Nedivi, E. (2012). Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74, 361-373. doi: 10. 1016/j. neuron. 2012. 02. 030.
    • (2012) Neuron , vol.74 , pp. 361-373
    • Chen, J.L.1    Villa, K.L.2    Cha, J.W.3    So, P.T.4    Kubota, Y.5    Nedivi, E.6
  • 13
    • 7244223157 scopus 로고    scopus 로고
    • Cortical rewiring and information storage
    • Chklovskii, D. B., Mel, B. W., and Svoboda, K. (2004). Cortical rewiring and information storage. Nature 431, 782-788. doi: 10. 1038/nature03012.
    • (2004) Nature , vol.431 , pp. 782-788
    • Chklovskii, D.B.1    Mel, B.W.2    Svoboda, K.3
  • 14
    • 84867704094 scopus 로고    scopus 로고
    • The BCM theory of synapse modification at 30: Interaction of theory with experiment
    • Cooper, L. N., and Bear, M. F. (2012). The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798-810. doi: 10. 1038/nrn3353.
    • (2012) Nat. Rev. Neurosci , vol.13 , pp. 798-810
    • Cooper, L.N.1    Bear, M.F.2
  • 15
    • 33745734146 scopus 로고    scopus 로고
    • Homeostatic control of neural activity: From phenomenology to molecular design
    • Davis, G. W. (2006). Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 29, 307-323. doi: 10. 1146/annurev. neuro. 28. 061604. 135751.
    • (2006) Annu. Rev. Neurosci , vol.29 , pp. 307-323
    • Davis, G.W.1
  • 16
    • 84887011923 scopus 로고    scopus 로고
    • Homeostatic signaling and the stabilization of neural function
    • Davis, G. W. (2013). Homeostatic signaling and the stabilization of neural function. Neuron 80, 718-728. doi: 10. 1016/j. neuron. 2013. 09. 044.
    • (2013) Neuron , vol.80 , pp. 718-728
    • Davis, G.W.1
  • 17
    • 0035043940 scopus 로고    scopus 로고
    • Maintaining the stability of neural function: A homeostatic hypothesis
    • Davis, G. W., and Bezprozvanny, I. (2001). Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol. 63, 847-869. doi: 10. 1146/annurev. physiol. 63. 1. 847.
    • (2001) Annu. Rev. Physiol , vol.63 , pp. 847-869
    • Davis, G.W.1    Bezprozvanny, I.2
  • 18
    • 33644853801 scopus 로고    scopus 로고
    • Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex
    • De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., et al. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49, 861-875. doi: 10. 1016/j. neuron. 2006. 02. 017.
    • (2006) Neuron , vol.49 , pp. 861-875
    • De Paola, V.1    Holtmaat, A.2    Knott, G.3    Song, S.4    Wilbrecht, L.5    Caroni, P.6
  • 19
    • 0036321820 scopus 로고    scopus 로고
    • Critical periods for experience-dependent synaptic scaling in visual cortex
    • Desai, N. S., Cudmore, R. H., Nelson, S. B., and Turrigiano, G. G. (2002). Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 5, 783-789. doi: 10. 1038/nn878.
    • (2002) Nat. Neurosci , vol.5 , pp. 783-789
    • Desai, N.S.1    Cudmore, R.H.2    Nelson, S.B.3    Turrigiano, G.G.4
  • 20
    • 0033560911 scopus 로고    scopus 로고
    • Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction
    • DiAntonio, A., Petersen, S. A., Heckmann, M., and Goodman, C. S. (1999). Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J. Neurosci. 19, 3023-3032.
    • (1999) J. Neurosci , vol.19 , pp. 3023-3032
    • DiAntonio, A.1    Petersen, S.A.2    Heckmann, M.3    Goodman, C.S.4
  • 21
    • 84894058880 scopus 로고    scopus 로고
    • How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity
    • Frank, C. A. (2014). How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity. Front. Cell. Neurosci. 8: 40. doi: 10. 3389/fncel. 2014. 00040.
    • (2014) Front. Cell. Neurosci , vol.8
    • Frank, C.A.1
  • 22
    • 79953162661 scopus 로고    scopus 로고
    • Experience-dependent structural plasticity in the cortex
    • Fu, M., and Zuo, Y. (2011). Experience-dependent structural plasticity in the cortex. Trends Neurosci. 34, 177-187. doi: 10. 1016/j. tins. 2011. 02. 001.
    • (2011) Trends Neurosci , vol.34 , pp. 177-187
    • Fu, M.1    Zuo, Y.2
  • 23
    • 84860267306 scopus 로고    scopus 로고
    • Synapses let loose for a change: Inhibitory synapse pruning throughout experience-dependent cortical plasticity
    • Gambino, F., and Holtmaat, A. (2012). Synapses let loose for a change: inhibitory synapse pruning throughout experience-dependent cortical plasticity. Neuron 74, 214-217. doi: 10. 1016/j. neuron. 2012. 04. 005.
    • (2012) Neuron , vol.74 , pp. 214-217
    • Gambino, F.1    Holtmaat, A.2
  • 24
    • 0027351577 scopus 로고
    • Developmental mechanisms that generate precise patterns of neuronal connectivity
    • Goodman, C. S., and Shatz, C. J. (1993). Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72(Suppl.), 77-98. doi: 10. 1016/s0092-8674(05)80030-3.
    • (1993) Cell , vol.72 , pp. 77-98
    • Goodman, C.S.1    Shatz, C.J.2
  • 25
    • 84866517642 scopus 로고    scopus 로고
    • REM sleep reorganizes hippocampal excitability
    • Grosmark, A. D., Mizuseki, K., Pastalkova, E., Diba, K., and Buzsáki, G. (2012). REM sleep reorganizes hippocampal excitability. Neuron 75, 1001-1007. doi: 10. 1016/j. neuron. 2012. 08. 015.
    • (2012) Neuron , vol.75 , pp. 1001-1007
    • Grosmark, A.D.1    Mizuseki, K.2    Pastalkova, E.3    Diba, K.4    Buzsáki, G.5
  • 26
    • 77953927331 scopus 로고    scopus 로고
    • Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability
    • Grubb, M. S., and Burrone, J. (2010). Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465, 1070-1074. doi: 10. 1038/nature09160.
    • (2010) Nature , vol.465 , pp. 1070-1074
    • Grubb, M.S.1    Burrone, J.2
  • 27
    • 80755143735 scopus 로고    scopus 로고
    • Short-and long-term plasticity at the axon initial segment
    • Grubb, M. S., Shu, Y., Kuba, H., Rasband, M. N., Wimmer, V. C., and Bender, K. J. (2011). Short-and long-term plasticity at the axon initial segment. J. Neurosci. 31, 16049-16055. doi: 10. 1523/JNEUROSCI. 4064-11. 2011.
    • (2011) J. Neurosci , vol.31 , pp. 16049-16055
    • Grubb, M.S.1    Shu, Y.2    Kuba, H.3    Rasband, M.N.4    Wimmer, V.C.5    Bender, K.J.6
  • 28
    • 77953931162 scopus 로고    scopus 로고
    • Neuroscience: A plastic axonal hotspot
    • Gründemann, J., and Häusser, M. (2010). Neuroscience: a plastic axonal hotspot. Nature 465, 1022-1023. doi: 10. 1038/4651022a.
    • (2010) Nature , vol.465 , pp. 1022-1023
    • Gründemann, J.1    Häusser, M.2
  • 29
    • 34548569929 scopus 로고    scopus 로고
    • NF-kappaB, IkappaB and IRAK control glutamate receptor density at the Drosophila NMJ
    • Heckscher, E. S., Fetter, R. D., Marek, K. W., Albin, S. D., and Davis, G. W. (2007). NF-kappaB, IkappaB and IRAK control glutamate receptor density at the Drosophila NMJ. Neuron 55, 859-873. doi: 10. 1016/j. neuron. 2007. 08. 005.
    • (2007) Neuron , vol.55 , pp. 859-873
    • Heckscher, E.S.1    Fetter, R.D.2    Marek, K.W.3    Albin, S.D.4    Davis, G.W.5
  • 30
    • 0028961262 scopus 로고
    • Structural plasticity in the Drosophila brain
    • Heisenberg, M., Heusipp, M., and Wanke, C. (1995). Structural plasticity in the Drosophila brain. J. Neurosci. 15, 1951-1960.
    • (1995) J. Neurosci , vol.15 , pp. 1951-1960
    • Heisenberg, M.1    Heusipp, M.2    Wanke, C.3
  • 31
    • 0032553477 scopus 로고    scopus 로고
    • Local GABA circuit control of experience-dependent plasticity in developing visual cortex
    • Hensch, T. K., Fagiolini, M., Mataga, N., Stryker, M. P., Baekkeskov, S., and Kash, S. F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504-1508. doi: 10. 1126/science. 282. 5393. 1504.
    • (1998) Science , vol.282 , pp. 1504-1508
    • Hensch, T.K.1    Fagiolini, M.2    Mataga, N.3    Stryker, M.P.4    Baekkeskov, S.5    Kash, S.F.6
  • 32
    • 69249100460 scopus 로고    scopus 로고
    • Experience-dependent structural synaptic plasticity in the mammalian brain
    • Holtmaat, A., and Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647-658. doi: 10. 1038/nrn2699.
    • (2009) Nat. Rev. Neurosci , vol.10 , pp. 647-658
    • Holtmaat, A.1    Svoboda, K.2
  • 33
    • 0029963657 scopus 로고    scopus 로고
    • Synaptic activity and the construction of cortical circuits
    • Katz, L. C., and Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science 274, 1133-1138. doi: 10. 1126/science. 274. 5290. 1133.
    • (1996) Science , vol.274 , pp. 1133-1138
    • Katz, L.C.1    Shatz, C.J.2
  • 34
    • 84885734405 scopus 로고    scopus 로고
    • Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
    • Keck, T., Keller, G. B., Jacobsen, R. I., Eysel, U. T., Bonhoeffer, T., and Hübener, M. (2013). Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80, 327-334. doi: 10. 1016/j. neuron. 2013. 08. 018.
    • (2013) Neuron , vol.80 , pp. 327-334
    • Keck, T.1    Keller, G.B.2    Jacobsen, R.I.3    Eysel, U.T.4    Bonhoeffer, T.5    Hübener, M.6
  • 35
    • 80052396435 scopus 로고    scopus 로고
    • Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex
    • Keck, T., Scheuss, V., Jacobsen, R. I., Wierenga, C. J., Eysel, U. T., Bonhoeffer, T., et al. (2011). Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron 71, 869-882. doi: 10. 1016/j. neuron. 2011. 06. 034.
    • (2011) Neuron , vol.71 , pp. 869-882
    • Keck, T.1    Scheuss, V.2    Jacobsen, R.I.3    Wierenga, C.J.4    Eysel, U.T.5    Bonhoeffer, T.6
  • 36
    • 0037083302 scopus 로고    scopus 로고
    • Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses
    • Kilman, V., van Rossum, M. C., and Turrigiano, G. G. (2002). Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J. Neurosci. 22, 1328-1337.
    • (2002) J. Neurosci , vol.22 , pp. 1328-1337
    • Kilman, V.1    van Rossum, M.C.2    Turrigiano, G.G.3
  • 37
    • 0033306744 scopus 로고    scopus 로고
    • Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated
    • Kirov, S. A., and Harris, K. M. (1999). Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated. Nat. Neurosci. 2, 878-883. doi: 10. 1038/13178.
    • (1999) Nat. Neurosci , vol.2 , pp. 878-883
    • Kirov, S.A.1    Harris, K.M.2
  • 38
    • 0037061693 scopus 로고    scopus 로고
    • Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice
    • Knott, G. W., Quairiaux, C., Genoud, C., and Welker, E. (2002). Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265-273. doi: 10. 1016/s0896-6273(02)00663-3.
    • (2002) Neuron , vol.34 , pp. 265-273
    • Knott, G.W.1    Quairiaux, C.2    Genoud, C.3    Welker, E.4
  • 39
    • 78149362384 scopus 로고    scopus 로고
    • Structural long-term changes at mushroom body input synapses
    • Kremer, M. C., Christiansen, F., Leiss, F., Paehler, M., Knapek, S., Andlauer, T. F., et al. (2010). Structural long-term changes at mushroom body input synapses. Curr. Biol. 20, 1938-1944. doi: 10. 1016/j. cub. 2010. 09. 060.
    • (2010) Curr. Biol , vol.20 , pp. 1938-1944
    • Kremer, M.C.1    Christiansen, F.2    Leiss, F.3    Paehler, M.4    Knapek, S.5    Andlauer, T.F.6
  • 40
    • 84869741972 scopus 로고    scopus 로고
    • Structural tuning and plasticity of the axon initial segment in auditory neurons
    • Kuba, H. (2012). Structural tuning and plasticity of the axon initial segment in auditory neurons. J. Physiol. 590, 5571-5579. doi: 10. 1113/jphysiol. 2012. 237305.
    • (2012) J. Physiol , vol.590 , pp. 5571-5579
    • Kuba, H.1
  • 41
    • 58149312535 scopus 로고    scopus 로고
    • Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick
    • Kuba, H., and Ohmori, H. (2009). Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick. J. Physiol. 587, 87-100. doi: 10. 1113/jphysiol. 2008. 162651.
    • (2009) J. Physiol , vol.587 , pp. 87-100
    • Kuba, H.1    Ohmori, H.2
  • 42
    • 77953923017 scopus 로고    scopus 로고
    • Presynaptic activity regulates Na(+) channel distribution at the axon initial segment
    • Kuba, H., Oichi, Y., and Ohmori, H. (2010). Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature 465, 1075-1078. doi: 10. 1038/nature09087.
    • (2010) Nature , vol.465 , pp. 1075-1078
    • Kuba, H.1    Oichi, Y.2    Ohmori, H.3
  • 43
    • 33846798025 scopus 로고    scopus 로고
    • Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents
    • Kubota, Y., Hatada, S., Kondo, S., Karube, F., and Kawaguchi, Y. (2007). Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J. Neurosci. 27, 1139-1150. doi: 10. 1523/jneurosci. 3846-06. 2007.
    • (2007) J. Neurosci , vol.27 , pp. 1139-1150
    • Kubota, Y.1    Hatada, S.2    Kondo, S.3    Karube, F.4    Kawaguchi, Y.5
  • 44
    • 0347915731 scopus 로고    scopus 로고
    • Structural plasticity and memory
    • Lamprecht, R., and LeDoux, J. (2004). Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45-54. doi: 10. 1038/nrn1301.
    • (2004) Nat. Rev. Neurosci , vol.5 , pp. 45-54
    • Lamprecht, R.1    LeDoux, J.2
  • 45
    • 5344241223 scopus 로고    scopus 로고
    • LTP and LTD: An embarrassment of riches
    • Malenka, R. C., and Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5-21. doi: 10. 1016/j. neuron. 2004. 09. 012.
    • (2004) Neuron , vol.44 , pp. 5-21
    • Malenka, R.C.1    Bear, M.F.2
  • 46
    • 33745712893 scopus 로고    scopus 로고
    • Variability, compensation and homeostasis in neuron and network function
    • Marder, E., and Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563-574. doi: 10. 1038/nrn1949.
    • (2006) Nat. Rev. Neurosci , vol.7 , pp. 563-574
    • Marder, E.1    Goaillard, J.M.2
  • 47
    • 1242314201 scopus 로고    scopus 로고
    • Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction
    • Marrus, S. B., Portman, S. L., Allen, M. J., Moffat, K. G., and DiAntonio, A. (2004). Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J. Neurosci. 24, 1406-1415. doi: 10. 1523/jneurosci. 1575-03. 2004.
    • (2004) J. Neurosci , vol.24 , pp. 1406-1415
    • Marrus, S.B.1    Portman, S.L.2    Allen, M.J.3    Moffat, K.G.4    DiAntonio, A.5
  • 48
    • 0035923749 scopus 로고    scopus 로고
    • Inactivity produces increases in neurotransmitter release and synapse size
    • Murthy, V. N., Schikorski, T., Stevens, C. F., and Zhu, Y. (2001). Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673-682. doi: 10. 1016/s0896-6273(01)00500-1.
    • (2001) Neuron , vol.32 , pp. 673-682
    • Murthy, V.N.1    Schikorski, T.2    Stevens, C.F.3    Zhu, Y.4
  • 49
    • 0031445676 scopus 로고    scopus 로고
    • Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release
    • Petersen, S. A., Fetter, R. D., Noordermeer, J. N., Goodman, C. S., and DiAntonio, A. (1997). Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron19, 1237-1248. doi: 10. 1016/s0896-6273(00)80415-8.
    • (1997) Neuron , vol.19 , pp. 1237-1248
    • Petersen, S.A.1    Fetter, R.D.2    Noordermeer, J.N.3    Goodman, C.S.4    DiAntonio, A.5
  • 50
    • 23944438930 scopus 로고    scopus 로고
    • Diverse modes of axon elaboration in the developing neocortex
    • Portera-Cailliau, C., Weimer, R. M., De Paola, V., Caroni, P., and Svoboda, K. (2005). Diverse modes of axon elaboration in the developing neocortex. PLoS Biol. 3: e272. doi: 10. 1371/journal. pbio. 0030272.
    • (2005) PLoS Biol , vol.3
    • Portera-Cailliau, C.1    Weimer, R.M.2    De Paola, V.3    Caroni, P.4    Svoboda, K.5
  • 51
    • 77952689858 scopus 로고    scopus 로고
    • Unraveling mechanisms of homeostatic synaptic plasticity
    • Pozo, K., and Goda, Y. (2010). Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337-351. doi: 10. 1016/j. neuron. 2010. 04. 028.
    • (2010) Neuron , vol.66 , pp. 337-351
    • Pozo, K.1    Goda, Y.2
  • 52
    • 54049106103 scopus 로고    scopus 로고
    • Failure of neuronal homeostasis results in common neuropsychiatric phenotypes
    • Ramocki, M. B., and Zoghbi, H. Y. (2008). Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455, 912-918. doi: 10. 1038/nature07457.
    • (2008) Nature , vol.455 , pp. 912-918
    • Ramocki, M.B.1    Zoghbi, H.Y.2
  • 53
    • 0032168158 scopus 로고    scopus 로고
    • BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses
    • Rutherford, L. C., Nelson, S. B., and Turrigiano, G. G. (1998). BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21, 521-530. doi: 10. 1016/s0896-6273(00)80563-2.
    • (1998) Neuron , vol.21 , pp. 521-530
    • Rutherford, L.C.1    Nelson, S.B.2    Turrigiano, G.G.3
  • 54
    • 0345724847 scopus 로고    scopus 로고
    • Sleep and synaptic homeostasis: A hypothesis
    • Tononi, G., and Cirelli, C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143-150. doi: 10. 1016/j. brainresbull. 2003. 09. 004.
    • (2003) Brain Res. Bull , vol.62 , pp. 143-150
    • Tononi, G.1    Cirelli, C.2
  • 55
    • 30844435916 scopus 로고    scopus 로고
    • Sleep function and synaptic homeostasis
    • Tononi, G., and Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49-62. doi: 10. 1016/j. smrv. 2005. 05. 002.
    • (2006) Sleep Med. Rev , vol.10 , pp. 49-62
    • Tononi, G.1    Cirelli, C.2
  • 56
    • 77955093058 scopus 로고    scopus 로고
    • Key role for gene dosage and synaptic homeostasis in autism spectrum disorders
    • Toro, R., Konyukh, M., Delorme, R., Leblond, C., Chaste, P., Fauchereau, F., et al. (2010). Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet. 26, 363-372. doi: 10. 1016/j. tig. 2010. 05. 007.
    • (2010) Trends Genet , vol.26 , pp. 363-372
    • Toro, R.1    Konyukh, M.2    Delorme, R.3    Leblond, C.4    Chaste, P.5    Fauchereau, F.6
  • 57
    • 54949143582 scopus 로고    scopus 로고
    • Structural homeostasis: Compensatory adjustments of dendritic arbor geometry in response to variations of synaptic input
    • Tripodi, M., Evers, J. F., Mauss, A., Bate, M., and Landgraf, M. (2008). Structural homeostasis: compensatory adjustments of dendritic arbor geometry in response to variations of synaptic input. PLoS Biol. 6: e260. doi: 10. 1371/journal. pbio. 0060260.
    • (2008) PLoS Biol , vol.6
    • Tripodi, M.1    Evers, J.F.2    Mauss, A.3    Bate, M.4    Landgraf, M.5
  • 58
    • 54549125798 scopus 로고    scopus 로고
    • The self-tuning neuron: Synaptic scaling of excitatory synapses
    • Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422-435. doi: 10. 1016/j. cell. 2008. 10. 008.
    • (2008) Cell , vol.135 , pp. 422-435
    • Turrigiano, G.G.1
  • 59
    • 84863888017 scopus 로고    scopus 로고
    • Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function
    • Turrigiano, G. (2012). Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 4: a005736. doi: 10. 1101/cshperspect. a005736.
    • (2012) Cold Spring Harb. Perspect. Biol , vol.4
    • Turrigiano, G.1
  • 60
    • 0032567928 scopus 로고    scopus 로고
    • Activity-dependent scaling of quantal amplitude in neocortical neurons
    • Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892-896. doi: 10. 1038/36103.
    • (1998) Nature , vol.391 , pp. 892-896
    • Turrigiano, G.G.1    Leslie, K.R.2    Desai, N.S.3    Rutherford, L.C.4    Nelson, S.B.5
  • 61
    • 0034131101 scopus 로고    scopus 로고
    • Hebb and homeostasis in neuronal plasticity
    • Turrigiano, G. G., and Nelson, S. B. (2000). Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358-364. doi: 10. 1016/s0959-4388(00)00091-x.
    • (2000) Curr. Opin. Neurobiol , vol.10 , pp. 358-364
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 62
    • 0742323527 scopus 로고    scopus 로고
    • Homeostatic plasticity in the developing nervous system
    • Turrigiano, G. G., and Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97-107. doi: 10. 1038/nrn1327.
    • (2004) Nat. Rev. Neurosci , vol.5 , pp. 97-107
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 63
    • 84860274203 scopus 로고    scopus 로고
    • Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity
    • van Versendaal, D., Rajendran, R., Saiepour, M. H., Klooster, J., Smit-Rigter, L., Sommeijer, J. P., et al. (2012). Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74, 374-383. doi: 10. 1016/j. neuron. 2012. 03. 015.
    • (2012) Neuron , vol.74 , pp. 374-383
    • van Versendaal, D.1    Rajendran, R.2    Saiepour, M.H.3    Klooster, J.4    Smit-Rigter, L.5    Sommeijer, J.P.6
  • 64
    • 84887545227 scopus 로고    scopus 로고
    • Cell biology in neuroscience: The interplay between Hebbian and homeostatic synaptic plasticity
    • Vitureira, N., and Goda, Y. (2013). Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. J. Cell Biol. 203, 175-186. doi: 10. 1083/jcb. 201306030.
    • (2013) J. Cell Biol , vol.203 , pp. 175-186
    • Vitureira, N.1    Goda, Y.2
  • 65
    • 3843136369 scopus 로고    scopus 로고
    • A morphological correlate of synaptic scaling in visual cortex
    • Wallace, W., and Bear, M. F. (2004). A morphological correlate of synaptic scaling in visual cortex. J. Neurosci. 24, 6928-6938. doi: 10. 1523/jneurosci. 1110-04. 2004.
    • (2004) J. Neurosci , vol.24 , pp. 6928-6938
    • Wallace, W.1    Bear, M.F.2
  • 66
    • 84888318195 scopus 로고    scopus 로고
    • Emerging links between homeostatic synaptic plasticity and neurological disease
    • Wondolowski, J., and Dickman, D. (2013). Emerging links between homeostatic synaptic plasticity and neurological disease. Front. Cell. Neurosci. 7: 223. doi: 10. 3389/fncel. 2013. 00223.
    • (2013) Front. Cell. Neurosci , vol.7
    • Wondolowski, J.1    Dickman, D.2
  • 67
    • 71149103007 scopus 로고    scopus 로고
    • Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex
    • Yamahachi, H., Marik, S. A., McManus, J. N., Denk, W., and Gilbert, C. D. (2009). Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 64, 719-729. doi: 10. 1016/j. neuron. 2009. 11. 026.
    • (2009) Neuron , vol.64 , pp. 719-729
    • Yamahachi, H.1    Marik, S.A.2    McManus, J.N.3    Denk, W.4    Gilbert, C.D.5
  • 68
    • 80052612215 scopus 로고    scopus 로고
    • Light-induced structural and functional plasticity in Drosophila larval visual system
    • Yuan, Q., Xiang, Y., Yan, Z., Han, C., Jan, L. Y., and Jan, Y. N. (2011). Light-induced structural and functional plasticity in Drosophila larval visual system. Science 333, 1458-1462. doi: 10. 1126/science. 1207121.
    • (2011) Science , vol.333 , pp. 1458-1462
    • Yuan, Q.1    Xiang, Y.2    Yan, Z.3    Han, C.4    Jan, L.Y.5    Jan, Y.N.6
  • 69
    • 22444441508 scopus 로고    scopus 로고
    • Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex
    • Zuo, Y., Yang, G., Kwon, E., and Gan, W. B. (2005). Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261-265. doi: 10. 1038/nature03715.
    • (2005) Nature , vol.436 , pp. 261-265
    • Zuo, Y.1    Yang, G.2    Kwon, E.3    Gan, W.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.