-
1
-
-
24144466550
-
Aminoglycoside Antibiotics Induce Bacterial Biofilm Formation
-
Hoffman, L. R.; D'Argenio, D. A.; MacCoss, M. J.; Zhang, Z.; Jones, R. A.; Miller, S. I. Aminoglycoside Antibiotics Induce Bacterial Biofilm Formation Nature 2005, 436, 1171-1175
-
(2005)
Nature
, vol.436
, pp. 1171-1175
-
-
Hoffman, L.R.1
D'Argenio, D.A.2
Maccoss, M.J.3
Zhang, Z.4
Jones, R.A.5
Miller, S.I.6
-
2
-
-
19944431305
-
Silver Nanoparticles and Polymeric Medical Devices: A New Approach to Prevention of Infection
-
Furno, F.; Morley, K. S.; Wong, B.; Sharp, B. L.; Arnold, P. L.; Howdle, S. M.; Bayston, R.; Brown, P. D.; Winship, P. D.; Reid, H. J. Silver Nanoparticles and Polymeric Medical Devices: A New Approach to Prevention of Infection J. Antimicrob. Chemother. 2004, 54, 1019-1024
-
(2004)
J. Antimicrob. Chemother.
, vol.54
, pp. 1019-1024
-
-
Furno, F.1
Morley, K.S.2
Wong, B.3
Sharp, B.L.4
Arnold, P.L.5
Howdle, S.M.6
Bayston, R.7
Brown, P.D.8
Winship, P.D.9
Reid, H.J.10
-
3
-
-
34047261095
-
Estimating Health Care-Associated Infections and Deaths in US Hospitals, 2002
-
Klevens, R. M.; Edwards, J. R.; Richards, C. L.; Horan, T. C.; Gaynes, R. P.; Pollock, D. A.; Cardo, D. M. Estimating Health Care-Associated Infections and Deaths in US Hospitals, 2002 Public Health Rep. 2007, 122, 160-166
-
(2007)
Public Health Rep.
, vol.122
, pp. 160-166
-
-
Klevens, R.M.1
Edwards, J.R.2
Richards, C.L.3
Horan, T.C.4
Gaynes, R.P.5
Pollock, D.A.6
Cardo, D.M.7
-
4
-
-
84865089719
-
Pediatric Vancomycin Use in 421 Hospitals in the United States, 2008
-
Tamar, L.; Jay, G.; Frank, R. E.; Liliana, G. Pediatric Vancomycin Use in 421 Hospitals in the United States, 2008 PLoS One 2012, 7, e43258
-
(2012)
PLoS One
, vol.7
, pp. 43258
-
-
Tamar, L.1
Jay, G.2
Frank, R.E.3
Liliana, G.4
-
5
-
-
33746001269
-
Antibacterial Natural Products in Medicinal Chemistry-Exodus or Revival?
-
von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Häbich, D. Antibacterial Natural Products in Medicinal Chemistry-Exodus or Revival? Angew. Chem., Int. Ed. 2006, 45, 5072-5129
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 5072-5129
-
-
Von Nussbaum, F.1
Brands, M.2
Hinzen, B.3
Weigand, S.4
Häbich, D.5
-
6
-
-
0029956752
-
Vancomycin-Resistant Enterococci from Nosocomial, Community, and Animal Sources in the United States
-
Coque, T. M.; Tomayko, J. F.; Ricke, S. C.; Okhyusen, P. C.; Murray, B. E. Vancomycin-Resistant Enterococci from Nosocomial, Community, and Animal Sources in the United States Antimicrob. Agents Chemother. 1996, 40, 2605-2609
-
(1996)
Antimicrob. Agents Chemother.
, vol.40
, pp. 2605-2609
-
-
Coque, T.M.1
Tomayko, J.F.2
Ricke, S.C.3
Okhyusen, P.C.4
Murray, B.E.5
-
7
-
-
29244437540
-
Vancomycin: A History
-
Levine, D. P. Vancomycin: A History Clin. Infect. Dis. 2006, 42 (Suppl 1) S5-S12
-
(2006)
Clin. Infect. Dis.
, vol.42
, pp. 5-S12
-
-
Levine, D.P.1
-
8
-
-
0141796263
-
Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities
-
Gu, H.; Ho, P.; Tong, E.; Wang, L.; Xu, B. Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities Nano Lett. 2003, 3, 1261-1263
-
(2003)
Nano Lett.
, vol.3
, pp. 1261-1263
-
-
Gu, H.1
Ho, P.2
Tong, E.3
Wang, L.4
Xu, B.5
-
9
-
-
54249098661
-
Vancomycin-Modified Nanoparticles for Efficient Targeting and Preconcentration of Gram-Positive and Gram-Negative Bacteria
-
Kell, A. J.; Stewart, G.; Ryan, S.; Peytavi, R.; Boissinot, M.; Huletsky, A.; Bergeron, M. G.; Simard, B. Vancomycin-Modified Nanoparticles for Efficient Targeting and Preconcentration of Gram-Positive and Gram-Negative Bacteria ACS Nano 2008, 2, 1777-1788
-
(2008)
ACS Nano
, vol.2
, pp. 1777-1788
-
-
Kell, A.J.1
Stewart, G.2
Ryan, S.3
Peytavi, R.4
Boissinot, M.5
Huletsky, A.6
Bergeron, M.G.7
Simard, B.8
-
10
-
-
0346995010
-
Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration
-
Gu, H.; Ho, P.-L.; Tsang, K. W.; Wang, L.; Xu, B. Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration J. Am. Chem. Soc. 2003, 125, 15702-15703
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 15702-15703
-
-
Gu, H.1
Ho, P.-L.2
Tsang, K.W.3
Wang, L.4
Xu, B.5
-
11
-
-
15444367116
-
Affinity Capture Using Vancomycin-Bound Magnetic Nanoparticles for the MALDI-MS Analysis of Bacteria
-
Lin, Y.-S.; Tsai, P.-J.; Weng, M.-F.; Chen, Y.-C. Affinity Capture Using Vancomycin-Bound Magnetic Nanoparticles for the MALDI-MS Analysis of Bacteria Anal. Chem. 2005, 77, 1753-1760
-
(2005)
Anal. Chem.
, vol.77
, pp. 1753-1760
-
-
Lin, Y.-S.1
Tsai, P.-J.2
Weng, M.-F.3
Chen, Y.-C.4
-
12
-
-
38049126047
-
Functional Gold Nanoparticles as Photothermal Agents for Selective-Killing of Pathogenic Bacteria
-
Huang, W.-C.; Tsai, P.-J.; Chen, Y.-C. Functional Gold Nanoparticles as Photothermal Agents for Selective-Killing of Pathogenic Bacteria Nanomedicine 2007, 2, 777-787
-
(2007)
Nanomedicine
, vol.2
, pp. 777-787
-
-
Huang, W.-C.1
Tsai, P.-J.2
Chen, Y.-C.3
-
13
-
-
58149466847
-
4@Au Nanoeggs as Photothermal Agents for Selective Killing of Nosocomial and Antibiotic-Resistant Bacteria
-
4@Au Nanoeggs as Photothermal Agents for Selective Killing of Nosocomial and Antibiotic-Resistant Bacteria Small 2009, 5, 51-56
-
(2009)
Small
, vol.5
, pp. 51-56
-
-
Huang, W.-C.1
Tsai, P.-J.2
Chen, Y.-C.3
-
14
-
-
84887586386
-
Vancomycin-Modified Mesoporous Silica Nanoparticles for Selective Recognition and Killing of Pathogenic Gram-Positive Bacteria over Macrophage-Like Cells
-
Qi, G.; Li, L.; Yu, F.; Wang, H. Vancomycin-Modified Mesoporous Silica Nanoparticles for Selective Recognition and Killing of Pathogenic Gram-Positive Bacteria Over Macrophage-Like Cells ACS Appl. Mater. Int. 2013, 5, 10874-10881
-
(2013)
ACS Appl. Mater. Int.
, vol.5
, pp. 10874-10881
-
-
Qi, G.1
Li, L.2
Yu, F.3
Wang, H.4
-
15
-
-
80155214241
-
4/Alumina Core/Shell MNPs as Photothermal Agents for Targeted Hyperthermia of Nosocomial and Antibiotic-Resistant Bacteria
-
4/Alumina Core/Shell MNPs as Photothermal Agents for Targeted Hyperthermia of Nosocomial and Antibiotic-Resistant Bacteria Nanomedicine 2011, 6, 1353-1363
-
(2011)
Nanomedicine
, vol.6
, pp. 1353-1363
-
-
Yu, T.-J.1
Li, P.-H.2
Tseng, T.-W.3
Chen, Y.-C.4
-
16
-
-
54249098661
-
Vancomycin-Modified Nanoparticles for Efficient Targeting and Preconcentration of Gram-Positive and Gram-Negative Bacteria
-
Arnold, J. K.; Gale, S.; Shannon, R.; Regis, P.; Maurice, B.; Ann, H.; Michel, G. B.; Benoit, S. Vancomycin-Modified Nanoparticles for Efficient Targeting and Preconcentration of Gram-Positive and Gram-Negative Bacteria ACS Nano 2008, 2, 1777-1788
-
(2008)
ACS Nano
, vol.2
, pp. 1777-1788
-
-
Arnold, J.K.1
Gale, S.2
Shannon, R.3
Regis, P.4
Maurice, B.5
Ann, H.6
Michel, G.B.7
Benoit, S.8
-
17
-
-
43149104125
-
2 Core/Shell Magnetic Nanoparticles as the Photo-Killing Agents for Pathogenic Bacteria
-
2 Core/Shell Magnetic Nanoparticles as the Photo-Killing Agents for Pathogenic Bacteria Small 2008, 4, 485-491
-
(2008)
Small
, vol.4
, pp. 485-491
-
-
Chen, W.-C.1
Tsai, P.-C.2
Chen, Y.-C.3
-
18
-
-
84884648845
-
Ag Nanoparticles and Vancomycin Comodified Layered Double Hydroxides for Simultaneous Capture and Disinfection of Bacteria
-
Sun, J.; Li, J.; Fan, H.; Ai, S. Ag Nanoparticles and Vancomycin Comodified Layered Double Hydroxides for Simultaneous Capture and Disinfection of Bacteria J. Mater. Chem. B 2013, 1, 5436-5442
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 5436-5442
-
-
Sun, J.1
Li, J.2
Fan, H.3
Ai, S.4
-
19
-
-
84878311926
-
4 Composite Nanoparticles for Near-Infrared Photothermal Ablation of Bacteria
-
4 Composite Nanoparticles for Near-Infrared Photothermal Ablation of Bacteria Acta Biomater. 2013, 9, 7573-7579
-
(2013)
Acta Biomater.
, vol.9
, pp. 7573-7579
-
-
Lai, B.-H.1
Chen, D.-H.2
-
20
-
-
84872865923
-
Dendrimer-Based Multivalent Vancomycin Nanoplatform for Targeting the Drug-Resistant Bacterial Surface
-
Choi, S. K.; Myc, A.; Silpe, J. E.; Sumit, M.; Tinmoi, P.; McCarthy, W. K.; Desai, A. M.; Thomas, T. P.; Kotlyar, A.; Holl, M. M. B.; Orr, B. G.; Baker, J. R. Dendrimer-Based Multivalent Vancomycin Nanoplatform for Targeting the Drug-Resistant Bacterial Surface ACS Nano 2013, 7, 214-228
-
(2013)
ACS Nano
, vol.7
, pp. 214-228
-
-
Choi, S.K.1
Myc, A.2
Silpe, J.E.3
Sumit, M.4
Tinmoi, P.5
McCarthy, W.K.6
Desai, A.M.7
Thomas, T.P.8
Kotlyar, A.9
Holl, M.M.B.10
Orr, B.G.11
Baker, J.R.12
-
21
-
-
84899871329
-
Facile One-Pot Synthesis of Amoxicillin-Coated Gold Nanoparticles and Their Antimicrobial Activity
-
Demurtas, M.; Perry, C. C. Facile One-Pot Synthesis of Amoxicillin-Coated Gold Nanoparticles and Their Antimicrobial Activity Gold Bull. 2014, 47, 103-107
-
(2014)
Gold Bull.
, vol.47
, pp. 103-107
-
-
Demurtas, M.1
Perry, C.C.2
-
22
-
-
77955389767
-
Antibiotic Mediated Synthesis of Gold Nanoparticles with Potent Antimicrobial Activity and Their Application in Antimicrobial Coatings
-
Rai, A.; Prabhune, A.; Perry, C. C. Antibiotic Mediated Synthesis of Gold Nanoparticles with Potent Antimicrobial Activity and Their Application in Antimicrobial Coatings J. Mater. Chem. 2010, 20, 6789-6798
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 6789-6798
-
-
Rai, A.1
Prabhune, A.2
Perry, C.C.3
-
23
-
-
33947282659
-
Vancomycin Architecture Dependence on the Capture Efficiency of Antibody-Modified Microbeads by Magnetic Nanoparticles
-
Kell, A. J.; Simard, B. Vancomycin Architecture Dependence on the Capture Efficiency of Antibody-Modified Microbeads by Magnetic Nanoparticles Chem. Commun. 2007, 1227-1229
-
(2007)
Chem. Commun.
, pp. 1227-1229
-
-
Kell, A.J.1
Simard, B.2
-
24
-
-
0025838737
-
Macrophage Production of Nitrogen Oxides in Host Defence Against Microorganisms
-
Granger, D. Macrophage Production of Nitrogen Oxides in Host Defence Against Microorganisms Res. Immunol. 1991, 142, 570-572
-
(1991)
Res. Immunol.
, vol.142
, pp. 570-572
-
-
Granger, D.1
-
25
-
-
35748934180
-
4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells
-
4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells Adv. Mater. 2007, 19, 3163-3166
-
(2007)
Adv. Mater.
, vol.19
, pp. 3163-3166
-
-
Xie, J.1
Xu, C.2
Kohler, N.3
Hou, Y.4
Sun, S.5
-
26
-
-
33748797672
-
Macrophage Uptake of Core-Shell Nanoparticles Surface Modified with Poly(ethylene glycol)
-
Zahr, A. S.; Davis, C. A.; Pishko, M. V. Macrophage Uptake of Core-Shell Nanoparticles Surface Modified with Poly(ethylene glycol) Langmuir 2006, 22, 8178-8185
-
(2006)
Langmuir
, vol.22
, pp. 8178-8185
-
-
Zahr, A.S.1
Davis, C.A.2
Pishko, M.V.3
-
27
-
-
0037817474
-
Physical Characterization and Macrophage Cell Uptake of Mannan-Coated Nanoparticles
-
Cui, Z.; Hsu, C.-H.; Mumper, R. J. Physical Characterization and Macrophage Cell Uptake of Mannan-Coated Nanoparticles Drug Dev. Ind. Pharm. 2003, 29, 689-700
-
(2003)
Drug Dev. Ind. Pharm.
, vol.29
, pp. 689-700
-
-
Cui, Z.1
Hsu, C.-H.2
Mumper, R.J.3
-
28
-
-
0021061819
-
Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays
-
Mosmann, Tim. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays J. Immunol. Methods 1983, 65, 55-63
-
(1983)
J. Immunol. Methods
, vol.65
, pp. 55-63
-
-
Mosmann, T.1
-
29
-
-
84902225803
-
Dextran-Encapsulated Photoluminescent Gold Nanoclusters: Synthesis and Application
-
Chiu, W.-J.; Chen, W.-Y.; Lai, H.-Z.; Wu, C.-Y.; Chiang, H.-L.; Chen, Y.-C. Dextran-Encapsulated Photoluminescent Gold Nanoclusters: Synthesis and Application J. Nanopart. Res. 2014, 16, 2478
-
(2014)
J. Nanopart. Res.
, vol.16
, pp. 2478
-
-
Chiu, W.-J.1
Chen, W.-Y.2
Lai, H.-Z.3
Wu, C.-Y.4
Chiang, H.-L.5
Chen, Y.-C.6
-
30
-
-
33644766862
-
Facile "green" Synthesis, Characterization, and Catalytic Function ofβ-d-Glucose-Stabilized Au Nanocrystals
-
Liu, J.; Qin, G.; Raveendran, P.; Ikushima, Y. Facile "Green" Synthesis, Characterization, and Catalytic Function ofβ-d-Glucose-Stabilized Au Nanocrystals Chem.-Eur. J. 2006, 12, 2131-2138
-
(2006)
Chem.-Eur. J.
, vol.12
, pp. 2131-2138
-
-
Liu, J.1
Qin, G.2
Raveendran, P.3
Ikushima, Y.4
-
31
-
-
79952312899
-
Carbohydrate-Directed Synthesis of Silver and Gold Nanoparticles: Effect of the Structure of Carbohydrates and Reducing Agents on the Size and Morphology of the Composites
-
Shervan, Z.; Yamamoto, Y. Carbohydrate-Directed Synthesis of Silver and Gold Nanoparticles: Effect of the Structure of Carbohydrates and Reducing Agents on the Size and Morphology of the Composites Carbohydr. Res. 2011, 346, 651-658
-
(2011)
Carbohydr. Res.
, vol.346
, pp. 651-658
-
-
Shervan, Z.1
Yamamoto, Y.2
-
32
-
-
33847629566
-
PH Induced Size-Selected Synthesis of PtRu Nanoparticles, Their Characterization and Electrocatalytic Properties
-
Genga, D.; Chen, L.; Lu, G. pH Induced Size-Selected Synthesis of PtRu Nanoparticles, Their Characterization and Electrocatalytic Properties J. Mol. Catal. A: Chem. 2007, 265, 42-49
-
(2007)
J. Mol. Catal. A: Chem.
, vol.265
, pp. 42-49
-
-
Genga, D.1
Chen, L.2
Lu, G.3
-
33
-
-
29344463391
-
Deposition of CTAB-Terminated Nanorods on Bacteria to Form Highly Conducting Hybrid Systems
-
Berry, V.; Gole, A.; Kundu, S.; Murphy, C. J.; Saraf, R. F. Deposition of CTAB-Terminated Nanorods on Bacteria to Form Highly Conducting Hybrid Systems J. Am. Chem. Soc. 2005, 127, 17600-17601
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 17600-17601
-
-
Berry, V.1
Gole, A.2
Kundu, S.3
Murphy, C.J.4
Saraf, R.F.5
-
34
-
-
27444447520
-
Self-Assembly of Nanoparticles on Live Bacterium: An Avenue to Fabricate Electronic Devices
-
Berry, V.; Saraf, R. F. Self-Assembly of Nanoparticles on Live Bacterium: An Avenue to Fabricate Electronic Devices Angew. Chem., Int. Ed. 2005, 44, 6668-6673
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 6668-6673
-
-
Berry, V.1
Saraf, R.F.2
-
35
-
-
34247095700
-
TLR2-Mediated Survival of Staphylococcus aureus in Macrophages:A Novel Bacterial Strategy Against Host Innate Immunity
-
Watanabe, I.; Ichiki, M.; Shiratsuchi, A.; Nakanishi, Y. TLR2-Mediated Survival of Staphylococcus aureus in Macrophages:A Novel Bacterial Strategy Against Host Innate Immunity J. Immunol. 2007, 178, 4917-4925
-
(2007)
J. Immunol.
, vol.178
, pp. 4917-4925
-
-
Watanabe, I.1
Ichiki, M.2
Shiratsuchi, A.3
Nakanishi, Y.4
|