-
1
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
Cheng, S.; Xing, D.; Call, D. F.; Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43 (10), 3953-3958.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.10
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
2
-
-
77957147094
-
Microbial electrosynthesis - Revisiting the electrical route for microbial production
-
Rabaey, K.; Rozendal, R. A. Microbial electrosynthesis - Revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8 (10), 706-716.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, Issue.10
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
3
-
-
84878648156
-
Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
-
Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol. 2013, 47 (11), 6023-6029.
-
(2013)
Environ. Sci. Technol.
, vol.47
, Issue.11
, pp. 6023-6029
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
4
-
-
84859817350
-
2: Long-term performance and perspectives
-
2: Long-term performance and perspectives. Int. J. Energy Res. 2012, 36 (6), 809-819.
-
(2012)
Int. J. Energy Res.
, vol.36
, Issue.6
, pp. 809-819
-
-
Eerten-Jansen, V.1
Mieke, C.A.2
Heijne, A.T.3
Buisman, C.J.4
Hamelers, H.V.5
-
5
-
-
84864831407
-
Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
-
Logan, B. E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337 (6095), 686-690.
-
(2012)
Science
, vol.337
, Issue.6095
, pp. 686-690
-
-
Logan, B.E.1
Rabaey, K.2
-
6
-
-
84878652242
-
Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
-
Lovley, D. R.; Nevin, K. P. Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 2013, 24 (3), 385-390.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, Issue.3
, pp. 385-390
-
-
Lovley, D.R.1
Nevin, K.P.2
-
7
-
-
74649087256
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 2010, 101 (9), 3085-3090.
-
(2010)
Bioresour. Technol.
, vol.101
, Issue.9
, pp. 3085-3090
-
-
Villano, M.1
Aulenta, F.2
Ciucci, C.3
Ferri, T.4
Giuliano, A.5
Majone, M.6
-
8
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
-
Rosenbaum, M.; Aulenta, F.; Villano, M.; Angenent, L. T. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 2011, 102 (1), 324-333.
-
(2011)
Bioresour. Technol.
, vol.102
, Issue.1
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
9
-
-
76049115157
-
Bioelectrochemical system stabilizes methane fermentation from garbage slurry
-
Sasaki, K.; Sasaki, D.; Morita, M.; Hirano, S.-i.; Matsumoto, N.; Ohmura, N.; Igarashi, Y. Bioelectrochemical system stabilizes methane fermentation from garbage slurry. Bioresour. Technol. 2010, 101 (10), 3415-3422.
-
(2010)
Bioresour. Technol.
, vol.101
, Issue.10
, pp. 3415-3422
-
-
Sasaki, K.1
Sasaki, D.2
Morita, M.3
Hirano, S.-I.4
Matsumoto, N.5
Ohmura, N.6
Igarashi, Y.7
-
10
-
-
84885608679
-
Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system
-
Van Eerten-Jansen, M. C.; Veldhoen, A. B.; Plugge, C. M.; Stams, A. J.; Buisman, C. J.; Ter Heijne, A. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system. Archaea 2013, 2013.
-
(2013)
Archaea
, vol.2013
-
-
Van Eerten-Jansen, M.C.1
Veldhoen, A.B.2
Plugge, C.M.3
Stams, A.J.4
Buisman, C.J.5
Ter Heijne, A.6
-
11
-
-
84898007126
-
Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis
-
Siegert, M.; Yates, M. D.; Call, D. F.; Zhu, X.; Spormann, A.; Logan, B. E. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustainable Chem. Eng. 2014, 2 (4), 910-917.
-
(2014)
ACS Sustainable Chem. Eng.
, vol.2
, Issue.4
, pp. 910-917
-
-
Siegert, M.1
Yates, M.D.2
Call, D.F.3
Zhu, X.4
Spormann, A.5
Logan, B.E.6
-
12
-
-
84905011427
-
Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
-
Lohner, S. T.; Deutzmann, J. S.; Logan, B. E.; Leigh, J.; Spormann, A. M. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 2014, 8 (8), 1673-1681.
-
(2014)
ISME J.
, vol.8
, Issue.8
, pp. 1673-1681
-
-
Lohner, S.T.1
Deutzmann, J.S.2
Logan, B.E.3
Leigh, J.4
Spormann, A.M.5
-
13
-
-
79953759834
-
Powering microbes with electricity: Direct electron transfer from electrodes to microbes
-
Lovley, D. R. Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environ. Microbiol. Rep. 2011, 3 (1), 27-35.
-
(2011)
Environ. Microbiol. Rep.
, vol.3
, Issue.1
, pp. 27-35
-
-
Lovley, D.R.1
-
14
-
-
65649150423
-
Source of methane and methods to control its formation in single chamber microbial electrolysis cells
-
Wang, A.; Liu, W.; Cheng, S.; Xing, D.; Zhou, J.; Logan, B. E. Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int. J. Hydrogen Energy 2009, 34 (9), 3653-3658.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, Issue.9
, pp. 3653-3658
-
-
Wang, A.1
Liu, W.2
Cheng, S.3
Xing, D.4
Zhou, J.5
Logan, B.E.6
-
15
-
-
84890454863
-
A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
-
MallaáShrestha, P. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy. Environ. Sci. 2014, 7 (1), 408-415.
-
(2014)
Energy. Environ. Sci.
, vol.7
, Issue.1
, pp. 408-415
-
-
MallaáShrestha, P.1
-
16
-
-
82355191731
-
Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell
-
Croese, E.; Pereira, M. A.; Euverink, G.-J.; Stams, A. J.; Geelhoed, J. S. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Appl. Environ. Microbiol. 2011, 92 (5), 1083-1093.
-
(2011)
Appl. Environ. Microbiol.
, vol.92
, Issue.5
, pp. 1083-1093
-
-
Croese, E.1
Pereira, M.A.2
Euverink, G.-J.3
Stams, A.J.4
Geelhoed, J.S.5
-
17
-
-
77649235028
-
Microbial electrolysis cell with a microbial biocathode
-
Jeremiasse, A. W.; Hamelers, H. V.; Buisman, C. J. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 2010, 78 (1), 39-43.
-
(2010)
Bioelectrochemistry
, vol.78
, Issue.1
, pp. 39-43
-
-
Jeremiasse, A.W.1
Hamelers, H.V.2
Buisman, C.J.3
-
18
-
-
40949122427
-
Hydrogen production with a microbial biocathode
-
Rozendal, R. A.; Jeremiasse, A. W.; Hamelers, H. V.; Buisman, C. J. Hydrogen production with a microbial biocathode. Environ. Sci. Technol. 2007, 42 (2), 629-634.
-
(2007)
Environ. Sci. Technol.
, vol.42
, Issue.2
, pp. 629-634
-
-
Rozendal, R.A.1
Jeremiasse, A.W.2
Hamelers, H.V.3
Buisman, C.J.4
-
19
-
-
33750368884
-
Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell
-
Jong, B. C.; Kim, B. H.; Chang, I. S.; Liew, P. W.; Choo, Y. F.; Kang, G. S. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ. Sci. Technol. 2006, 40 (20), 6449-6454.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.20
, pp. 6449-6454
-
-
Jong, B.C.1
Kim, B.H.2
Chang, I.S.3
Liew, P.W.4
Choo, Y.F.5
Kang, G.S.6
-
20
-
-
84866148210
-
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
-
Pisciotta, J. M.; Zaybak, Z.; Call, D. F.; Nam, J.-Y.; Logan, B. E. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl. Environ. Microbiol. 2012, 78 (15), 5212-5219.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, Issue.15
, pp. 5212-5219
-
-
Pisciotta, J.M.1
Zaybak, Z.2
Call, D.F.3
Nam, J.-Y.4
Logan, B.E.5
-
21
-
-
84878193965
-
Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor
-
Kobayashi, H.; Saito, N.; Fu, Q.; Kawaguchi, H.; Vilcaez, J.; Wakayama, T.; Maeda, H.; Sato, K. Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J. Biosci. Bioeng. 2013, 116 (1), 114-117.
-
(2013)
J. Biosci. Bioeng.
, vol.116
, Issue.1
, pp. 114-117
-
-
Kobayashi, H.1
Saito, N.2
Fu, Q.3
Kawaguchi, H.4
Vilcaez, J.5
Wakayama, T.6
Maeda, H.7
Sato, K.8
-
22
-
-
38349192280
-
Electricity generation by thermophilic microorganisms from marine sediment
-
Mathis, B. J.; Marshall, C. W.; Milliken, C. E.; Makkar, R. S.; Creager, S. E.; May, H. D. Electricity generation by thermophilic microorganisms from marine sediment. Appl. Environ. Microbiol. 2008, 78 (1), 147-155.
-
(2008)
Appl. Environ. Microbiol.
, vol.78
, Issue.1
, pp. 147-155
-
-
Mathis, B.J.1
Marshall, C.W.2
Milliken, C.E.3
Makkar, R.S.4
Creager, S.E.5
May, H.D.6
-
23
-
-
55549118558
-
A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells
-
Wrighton, K. C.; Agbo, P.; Warnecke, F.; Weber, K. A.; Brodie, E. L.; DeSantis, T. Z.; Hugenholtz, P.; Andersen, G. L.; Coates, J. D. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2008, 2 (11), 1146-1156.
-
(2008)
ISME J.
, vol.2
, Issue.11
, pp. 1146-1156
-
-
Wrighton, K.C.1
Agbo, P.2
Warnecke, F.3
Weber, K.A.4
Brodie, E.L.5
DeSantis, T.Z.6
Hugenholtz, P.7
Andersen, G.L.8
Coates, J.D.9
-
24
-
-
84887071069
-
Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production
-
Fu, Q.; Kobayashi, H.; Kuramochi, Y.; Xu, J.; Wakayama, T.; Maeda, H.; Sato, K. Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. Int. J. Hydrogen Energy 2013, 38 (35), 15638-15645.
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, Issue.35
, pp. 15638-15645
-
-
Fu, Q.1
Kobayashi, H.2
Kuramochi, Y.3
Xu, J.4
Wakayama, T.5
Maeda, H.6
Sato, K.7
-
25
-
-
66749142547
-
Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica
-
Marshall, C. W.; May, H. D. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy. Environ. Sci. 2009, 2 (6), 699-705.
-
(2009)
Energy. Environ. Sci.
, vol.2
, Issue.6
, pp. 699-705
-
-
Marshall, C.W.1
May, H.D.2
-
26
-
-
84887967175
-
A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability
-
Fu, Q.; Kobayashi, H.; Kawaguchi, H.; Wakayama, T.; Maeda, H.; Sato, K. A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability. Environ. Sci. Technol. 2013, 47 (21), 12583-12590.
-
(2013)
Environ. Sci. Technol.
, vol.47
, Issue.21
, pp. 12583-12590
-
-
Fu, Q.1
Kobayashi, H.2
Kawaguchi, H.3
Wakayama, T.4
Maeda, H.5
Sato, K.6
-
27
-
-
84897987409
-
Identification of new microbial mediators for electromethanogenic reduction of geologically-stored carbon dioxide
-
Fu, Q.; Kobayashi, H.; Kawaguchi, H.; Vilcaez, J.; Sato, K. Identification of new microbial mediators for electromethanogenic reduction of geologically-stored carbon dioxide. Energy Procedia 2013, 37, 7006-7013.
-
(2013)
Energy Procedia
, vol.37
, pp. 7006-7013
-
-
Fu, Q.1
Kobayashi, H.2
Kawaguchi, H.3
Vilcaez, J.4
Sato, K.5
-
28
-
-
0018419825
-
Methanogens: Reevaluation of a unique biological group
-
Balch, W. E.; Fox, G. E.; Magrum, L. J.; Woese, C. R.; Wolfe, R. S. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 1979, 43 (2), 260.
-
(1979)
Microbiol. Rev.
, vol.43
, Issue.2
, pp. 260
-
-
Balch, W.E.1
Fox, G.E.2
Magrum, L.J.3
Woese, C.R.4
Wolfe, R.S.5
-
29
-
-
0002348293
-
The number of new species, and the increase in population coverage, when a sample is increased
-
Good, I. J.; Toulmin, G. H. The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 1956, 43 (1-2), 45-63.
-
(1956)
Biometrika
, vol.43
, Issue.1-2
, pp. 45-63
-
-
Good, I.J.1
Toulmin, G.H.2
-
30
-
-
34547781750
-
MEGA4: Molecular evolutionary genetics analysis (MEGA) software
-
version 4.0
-
Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24 (8), 1596-1599.
-
(2007)
Mol. Biol. Evol.
, vol.24
, Issue.8
, pp. 1596-1599
-
-
Tamura, K.1
Dudley, J.2
Nei, M.3
Kumar, S.4
-
31
-
-
84877593152
-
Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica
-
Parameswaran, P.; Bry, T.; Popat, S. C.; Lusk, B. G.; Rittmann, B. E.; Torres, C. s. I. Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environ. Sci. Technol. 2013, 47 (9), 4934-4940.
-
(2013)
Environ. Sci. Technol.
, vol.47
, Issue.9
, pp. 4934-4940
-
-
Parameswaran, P.1
Bry, T.2
Popat, S.C.3
Lusk, B.G.4
Rittmann, B.E.5
Torres, C.S.I.6
-
33
-
-
84870769198
-
Electrosynthesis of commodity chemicals by an autotrophic microbial community
-
Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 2012, 78 (23), 8412-8420.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, Issue.23
, pp. 8412-8420
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
34
-
-
33644865270
-
The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture
-
Johnson, M. R.; Conners, S. B.; Montero, C. I.; Chou, C. J.; Shockley, K. R.; Kelly, R. M. The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture. Appl. Environ. Microbiol. 2006, 72 (1), 811-818.
-
(2006)
Appl. Environ. Microbiol.
, vol.72
, Issue.1
, pp. 811-818
-
-
Johnson, M.R.1
Conners, S.B.2
Montero, C.I.3
Chou, C.J.4
Shockley, K.R.5
Kelly, R.M.6
-
35
-
-
0034921457
-
Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria
-
Plugge, C. M.; van Leeuwen, J. M.; Hummelen, T.; Balk, M.; Stams, A. J. Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria. Arch. Microbiol. 2001, 176 (1-2), 29-36.
-
(2001)
Arch. Microbiol.
, vol.176
, Issue.1-2
, pp. 29-36
-
-
Plugge, C.M.1
Van Leeuwen, J.M.2
Hummelen, T.3
Balk, M.4
Stams, A.J.5
-
36
-
-
84920286410
-
Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes
-
Yates, M. D.; Siegert, M.; Logan, B. E. Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes. Int. J. Hydrogen Energy 2014, 39 (30), 16841-16851.
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, Issue.30
, pp. 16841-16851
-
-
Yates, M.D.1
Siegert, M.2
Logan, B.E.3
|