메뉴 건너뛰기




Volumn 49, Issue 2, 2015, Pages 1225-1232

Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis

Author keywords

[No Author keywords available]

Indexed keywords

BIOCATALYSTS; ENZYMES; MICROORGANISMS;

EID: 84921759341     PISSN: 0013936X     EISSN: 15205851     Source Type: Journal    
DOI: 10.1021/es5052233     Document Type: Article
Times cited : (155)

References (36)
  • 1
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng, S.; Xing, D.; Call, D. F.; Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43 (10), 3953-3958.
    • (2009) Environ. Sci. Technol. , vol.43 , Issue.10 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 2
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis - Revisiting the electrical route for microbial production
    • Rabaey, K.; Rozendal, R. A. Microbial electrosynthesis - Revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8 (10), 706-716.
    • (2010) Nat. Rev. Microbiol. , vol.8 , Issue.10 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 3
    • 84878648156 scopus 로고    scopus 로고
    • Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
    • Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol. 2013, 47 (11), 6023-6029.
    • (2013) Environ. Sci. Technol. , vol.47 , Issue.11 , pp. 6023-6029
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 5
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • Logan, B. E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337 (6095), 686-690.
    • (2012) Science , vol.337 , Issue.6095 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 6
    • 84878652242 scopus 로고    scopus 로고
    • Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
    • Lovley, D. R.; Nevin, K. P. Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 2013, 24 (3), 385-390.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , Issue.3 , pp. 385-390
    • Lovley, D.R.1    Nevin, K.P.2
  • 8
    • 77957359097 scopus 로고    scopus 로고
    • Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
    • Rosenbaum, M.; Aulenta, F.; Villano, M.; Angenent, L. T. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 2011, 102 (1), 324-333.
    • (2011) Bioresour. Technol. , vol.102 , Issue.1 , pp. 324-333
    • Rosenbaum, M.1    Aulenta, F.2    Villano, M.3    Angenent, L.T.4
  • 11
    • 84898007126 scopus 로고    scopus 로고
    • Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis
    • Siegert, M.; Yates, M. D.; Call, D. F.; Zhu, X.; Spormann, A.; Logan, B. E. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustainable Chem. Eng. 2014, 2 (4), 910-917.
    • (2014) ACS Sustainable Chem. Eng. , vol.2 , Issue.4 , pp. 910-917
    • Siegert, M.1    Yates, M.D.2    Call, D.F.3    Zhu, X.4    Spormann, A.5    Logan, B.E.6
  • 12
    • 84905011427 scopus 로고    scopus 로고
    • Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
    • Lohner, S. T.; Deutzmann, J. S.; Logan, B. E.; Leigh, J.; Spormann, A. M. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 2014, 8 (8), 1673-1681.
    • (2014) ISME J. , vol.8 , Issue.8 , pp. 1673-1681
    • Lohner, S.T.1    Deutzmann, J.S.2    Logan, B.E.3    Leigh, J.4    Spormann, A.M.5
  • 13
    • 79953759834 scopus 로고    scopus 로고
    • Powering microbes with electricity: Direct electron transfer from electrodes to microbes
    • Lovley, D. R. Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environ. Microbiol. Rep. 2011, 3 (1), 27-35.
    • (2011) Environ. Microbiol. Rep. , vol.3 , Issue.1 , pp. 27-35
    • Lovley, D.R.1
  • 14
    • 65649150423 scopus 로고    scopus 로고
    • Source of methane and methods to control its formation in single chamber microbial electrolysis cells
    • Wang, A.; Liu, W.; Cheng, S.; Xing, D.; Zhou, J.; Logan, B. E. Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int. J. Hydrogen Energy 2009, 34 (9), 3653-3658.
    • (2009) Int. J. Hydrogen Energy , vol.34 , Issue.9 , pp. 3653-3658
    • Wang, A.1    Liu, W.2    Cheng, S.3    Xing, D.4    Zhou, J.5    Logan, B.E.6
  • 15
    • 84890454863 scopus 로고    scopus 로고
    • A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
    • MallaáShrestha, P. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy. Environ. Sci. 2014, 7 (1), 408-415.
    • (2014) Energy. Environ. Sci. , vol.7 , Issue.1 , pp. 408-415
    • MallaáShrestha, P.1
  • 16
    • 82355191731 scopus 로고    scopus 로고
    • Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell
    • Croese, E.; Pereira, M. A.; Euverink, G.-J.; Stams, A. J.; Geelhoed, J. S. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Appl. Environ. Microbiol. 2011, 92 (5), 1083-1093.
    • (2011) Appl. Environ. Microbiol. , vol.92 , Issue.5 , pp. 1083-1093
    • Croese, E.1    Pereira, M.A.2    Euverink, G.-J.3    Stams, A.J.4    Geelhoed, J.S.5
  • 17
    • 77649235028 scopus 로고    scopus 로고
    • Microbial electrolysis cell with a microbial biocathode
    • Jeremiasse, A. W.; Hamelers, H. V.; Buisman, C. J. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 2010, 78 (1), 39-43.
    • (2010) Bioelectrochemistry , vol.78 , Issue.1 , pp. 39-43
    • Jeremiasse, A.W.1    Hamelers, H.V.2    Buisman, C.J.3
  • 19
    • 33750368884 scopus 로고    scopus 로고
    • Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell
    • Jong, B. C.; Kim, B. H.; Chang, I. S.; Liew, P. W.; Choo, Y. F.; Kang, G. S. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ. Sci. Technol. 2006, 40 (20), 6449-6454.
    • (2006) Environ. Sci. Technol. , vol.40 , Issue.20 , pp. 6449-6454
    • Jong, B.C.1    Kim, B.H.2    Chang, I.S.3    Liew, P.W.4    Choo, Y.F.5    Kang, G.S.6
  • 20
    • 84866148210 scopus 로고    scopus 로고
    • Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
    • Pisciotta, J. M.; Zaybak, Z.; Call, D. F.; Nam, J.-Y.; Logan, B. E. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl. Environ. Microbiol. 2012, 78 (15), 5212-5219.
    • (2012) Appl. Environ. Microbiol. , vol.78 , Issue.15 , pp. 5212-5219
    • Pisciotta, J.M.1    Zaybak, Z.2    Call, D.F.3    Nam, J.-Y.4    Logan, B.E.5
  • 21
    • 84878193965 scopus 로고    scopus 로고
    • Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor
    • Kobayashi, H.; Saito, N.; Fu, Q.; Kawaguchi, H.; Vilcaez, J.; Wakayama, T.; Maeda, H.; Sato, K. Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J. Biosci. Bioeng. 2013, 116 (1), 114-117.
    • (2013) J. Biosci. Bioeng. , vol.116 , Issue.1 , pp. 114-117
    • Kobayashi, H.1    Saito, N.2    Fu, Q.3    Kawaguchi, H.4    Vilcaez, J.5    Wakayama, T.6    Maeda, H.7    Sato, K.8
  • 24
    • 84887071069 scopus 로고    scopus 로고
    • Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production
    • Fu, Q.; Kobayashi, H.; Kuramochi, Y.; Xu, J.; Wakayama, T.; Maeda, H.; Sato, K. Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. Int. J. Hydrogen Energy 2013, 38 (35), 15638-15645.
    • (2013) Int. J. Hydrogen Energy , vol.38 , Issue.35 , pp. 15638-15645
    • Fu, Q.1    Kobayashi, H.2    Kuramochi, Y.3    Xu, J.4    Wakayama, T.5    Maeda, H.6    Sato, K.7
  • 25
    • 66749142547 scopus 로고    scopus 로고
    • Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica
    • Marshall, C. W.; May, H. D. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy. Environ. Sci. 2009, 2 (6), 699-705.
    • (2009) Energy. Environ. Sci. , vol.2 , Issue.6 , pp. 699-705
    • Marshall, C.W.1    May, H.D.2
  • 26
    • 84887967175 scopus 로고    scopus 로고
    • A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability
    • Fu, Q.; Kobayashi, H.; Kawaguchi, H.; Wakayama, T.; Maeda, H.; Sato, K. A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability. Environ. Sci. Technol. 2013, 47 (21), 12583-12590.
    • (2013) Environ. Sci. Technol. , vol.47 , Issue.21 , pp. 12583-12590
    • Fu, Q.1    Kobayashi, H.2    Kawaguchi, H.3    Wakayama, T.4    Maeda, H.5    Sato, K.6
  • 27
    • 84897987409 scopus 로고    scopus 로고
    • Identification of new microbial mediators for electromethanogenic reduction of geologically-stored carbon dioxide
    • Fu, Q.; Kobayashi, H.; Kawaguchi, H.; Vilcaez, J.; Sato, K. Identification of new microbial mediators for electromethanogenic reduction of geologically-stored carbon dioxide. Energy Procedia 2013, 37, 7006-7013.
    • (2013) Energy Procedia , vol.37 , pp. 7006-7013
    • Fu, Q.1    Kobayashi, H.2    Kawaguchi, H.3    Vilcaez, J.4    Sato, K.5
  • 29
    • 0002348293 scopus 로고
    • The number of new species, and the increase in population coverage, when a sample is increased
    • Good, I. J.; Toulmin, G. H. The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 1956, 43 (1-2), 45-63.
    • (1956) Biometrika , vol.43 , Issue.1-2 , pp. 45-63
    • Good, I.J.1    Toulmin, G.H.2
  • 30
    • 34547781750 scopus 로고    scopus 로고
    • MEGA4: Molecular evolutionary genetics analysis (MEGA) software
    • version 4.0
    • Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24 (8), 1596-1599.
    • (2007) Mol. Biol. Evol. , vol.24 , Issue.8 , pp. 1596-1599
    • Tamura, K.1    Dudley, J.2    Nei, M.3    Kumar, S.4
  • 31
    • 84877593152 scopus 로고    scopus 로고
    • Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica
    • Parameswaran, P.; Bry, T.; Popat, S. C.; Lusk, B. G.; Rittmann, B. E.; Torres, C. s. I. Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environ. Sci. Technol. 2013, 47 (9), 4934-4940.
    • (2013) Environ. Sci. Technol. , vol.47 , Issue.9 , pp. 4934-4940
    • Parameswaran, P.1    Bry, T.2    Popat, S.C.3    Lusk, B.G.4    Rittmann, B.E.5    Torres, C.S.I.6
  • 33
    • 84870769198 scopus 로고    scopus 로고
    • Electrosynthesis of commodity chemicals by an autotrophic microbial community
    • Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 2012, 78 (23), 8412-8420.
    • (2012) Appl. Environ. Microbiol. , vol.78 , Issue.23 , pp. 8412-8420
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 34
    • 33644865270 scopus 로고    scopus 로고
    • The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture
    • Johnson, M. R.; Conners, S. B.; Montero, C. I.; Chou, C. J.; Shockley, K. R.; Kelly, R. M. The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture. Appl. Environ. Microbiol. 2006, 72 (1), 811-818.
    • (2006) Appl. Environ. Microbiol. , vol.72 , Issue.1 , pp. 811-818
    • Johnson, M.R.1    Conners, S.B.2    Montero, C.I.3    Chou, C.J.4    Shockley, K.R.5    Kelly, R.M.6
  • 35
    • 0034921457 scopus 로고    scopus 로고
    • Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria
    • Plugge, C. M.; van Leeuwen, J. M.; Hummelen, T.; Balk, M.; Stams, A. J. Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria. Arch. Microbiol. 2001, 176 (1-2), 29-36.
    • (2001) Arch. Microbiol. , vol.176 , Issue.1-2 , pp. 29-36
    • Plugge, C.M.1    Van Leeuwen, J.M.2    Hummelen, T.3    Balk, M.4    Stams, A.J.5
  • 36
    • 84920286410 scopus 로고    scopus 로고
    • Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes
    • Yates, M. D.; Siegert, M.; Logan, B. E. Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes. Int. J. Hydrogen Energy 2014, 39 (30), 16841-16851.
    • (2014) Int. J. Hydrogen Energy , vol.39 , Issue.30 , pp. 16841-16851
    • Yates, M.D.1    Siegert, M.2    Logan, B.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.