-
3
-
-
84864831407
-
Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
-
Logan, B. E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies Science 2012, 337 (6095) 686-690
-
(2012)
Science
, vol.337
, Issue.6095
, pp. 686-690
-
-
Logan, B.E.1
Rabaey, K.2
-
4
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
Cheng, S.; Xing, D.; Call, D. F.; Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis Environ. Sci. Technol. 2009, 43 (10) 3953-3958
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.10
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
5
-
-
74649087256
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture Bioresour. Technol. 2010, 101 (9) 3085-3090
-
(2010)
Bioresour. Technol.
, vol.101
, Issue.9
, pp. 3085-3090
-
-
Villano, M.1
Aulenta, F.2
Ciucci, C.3
Ferri, T.4
Giuliano, A.5
Majone, M.6
-
6
-
-
1542378939
-
Iron corrosion by novel anaerobic microorganisms
-
Dinh, H. T.; Kuever, J.; Mußmann, M.; Hassel, A. W.; Stratmann, M.; Widdel, F. Iron corrosion by novel anaerobic microorganisms Nature 2004, 427 (6977) 829-832
-
(2004)
Nature
, vol.427
, Issue.6977
, pp. 829-832
-
-
Dinh, H.T.1
Kuever, J.2
Mußmann, M.3
Hassel, A.W.4
Stratmann, M.5
Widdel, F.6
-
7
-
-
77749260571
-
Iron-corroding methanogen isolated from a crude-oil storage tank
-
Uchiyama, T.; Ito, K.; Mori, K.; Tsurumaru, H.; Harayama, S. Iron-corroding methanogen isolated from a crude-oil storage tank Appl. Environ. Microbiol. 2010, 76 (6) 1783-1788
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, Issue.6
, pp. 1783-1788
-
-
Uchiyama, T.1
Ito, K.2
Mori, K.3
Tsurumaru, H.4
Harayama, S.5
-
8
-
-
84863216374
-
Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust
-
Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H. T.; Meyer, V.; Mayrhofer, K.; Hassel, A. W.; Stratmann, M.; Widdel, F. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust Environ. Microbiol. 2012, 14 (7) 1772-1787
-
(2012)
Environ. Microbiol.
, vol.14
, Issue.7
, pp. 1772-1787
-
-
Enning, D.1
Venzlaff, H.2
Garrelfs, J.3
Dinh, H.T.4
Meyer, V.5
Mayrhofer, K.6
Hassel, A.W.7
Stratmann, M.8
Widdel, F.9
-
9
-
-
84869496805
-
Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria
-
Venzlaff, H.; Enning, D.; Srinivasan, J.; Mayrhofer, K. J. J.; Hassel, A. W.; Widdel, F.; Stratmann, M. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria Corros. Sci. 2013, 66 (0) 88-96
-
(2013)
Corros. Sci.
, vol.66
, Issue.0
, pp. 88-96
-
-
Venzlaff, H.1
Enning, D.2
Srinivasan, J.3
Mayrhofer, K.J.J.4
Hassel, A.W.5
Widdel, F.6
Stratmann, M.7
-
10
-
-
84862886537
-
Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals
-
Kato, S.; Hashimoto, K.; Watanabe, K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals Environ. Microbiol. 2012, 14 (7) 1646-1654
-
(2012)
Environ. Microbiol.
, vol.14
, Issue.7
, pp. 1646-1654
-
-
Kato, S.1
Hashimoto, K.2
Watanabe, K.3
-
11
-
-
3142725118
-
Direct inhibition of methanogenesis by ferric iron
-
van Bodegom, P. M.; Scholten, J. C. M.; Stams, A. J. M. Direct inhibition of methanogenesis by ferric iron FEMS Microbiol. Ecol. 2004, 49 (2) 261-268
-
(2004)
FEMS Microbiol. Ecol.
, vol.49
, Issue.2
, pp. 261-268
-
-
Van Bodegom, P.M.1
Scholten, J.C.M.2
Stams, A.J.M.3
-
12
-
-
77957700833
-
The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells
-
Zhang, Y.; Merrill, M. D.; Logan, B. E. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells Int. J. Hydrogen Energy 2010, 35 (21) 12020-12028
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, Issue.21
, pp. 12020-12028
-
-
Zhang, Y.1
Merrill, M.D.2
Logan, B.E.3
-
13
-
-
84875452549
-
The electrochemistry of metallic nickel: Oxides, hydroxides, hydrides and alkaline hydrogen evolution
-
Hall, D. S.; Bock, C.; MacDougall, B. R. The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution J. Electrochem. Soc. 2013, 160 (3) F235-F243
-
(2013)
J. Electrochem. Soc.
, vol.160
, Issue.3
-
-
Hall, D.S.1
Bock, C.2
MacDougall, B.R.3
-
14
-
-
79960918223
-
Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells
-
Tokash, J. C.; Logan, B. E. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells Int. J. Hydrogen Energy 2011, 36 (16) 9439-9445
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, Issue.16
, pp. 9439-9445
-
-
Tokash, J.C.1
Logan, B.E.2
-
15
-
-
84870769198
-
Electrosynthesis of commodity chemicals by an autotrophic microbial community
-
Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Electrosynthesis of commodity chemicals by an autotrophic microbial community Appl. Environ. Microbiol. 2012, 78 (23) 8412-8420
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, Issue.23
, pp. 8412-8420
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
16
-
-
80052479451
-
Electrochemically assisted methane production in a biofilm reactor
-
Villano, M.; Monaco, G.; Aulenta, F.; Majone, M. Electrochemically assisted methane production in a biofilm reactor J. Power Sources 2011, 196 (22) 9467-9472
-
(2011)
J. Power Sources
, vol.196
, Issue.22
, pp. 9467-9472
-
-
Villano, M.1
Monaco, G.2
Aulenta, F.3
Majone, M.4
-
18
-
-
84874661053
-
Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate
-
Jiang, Y.; Su, M.; Zhang, Y.; Zhan, G.; Tao, Y.; Li, D. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate Int. J. Hydrogen Energy 2013, 38 (8) 3497-3502
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, Issue.8
, pp. 3497-3502
-
-
Jiang, Y.1
Su, M.2
Zhang, Y.3
Zhan, G.4
Tao, Y.5
Li, D.6
-
19
-
-
84872760339
-
Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs
-
Sato, K.; Kawaguchi, H.; Kobayashi, H. Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs Energy Convers. Manage. 2013, 66 (0) 343-350
-
(2013)
Energy Convers. Manage.
, vol.66
, Issue.0
, pp. 343-350
-
-
Sato, K.1
Kawaguchi, H.2
Kobayashi, H.3
-
20
-
-
64549127249
-
High surface area stainless steel brushes as cathodes in microbial electrolysis cells
-
Call, D. F.; Merrill, M. D.; Logan, B. E. High surface area stainless steel brushes as cathodes in microbial electrolysis cells Environ. Sci. Technol. 2009, 43 (6) 2179-2183
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.6
, pp. 2179-2183
-
-
Call, D.F.1
Merrill, M.D.2
Logan, B.E.3
-
21
-
-
84655170303
-
Bioreactor performance and methanogenic population dynamics in a low-temperature (5-18 °c) anaerobic fixed-bed reactor
-
Zhang, D.; Zhu, W.; Tang, C.; Suo, Y.; Gao, L.; Yuan, X.; Wang, X.; Cui, Z. Bioreactor performance and methanogenic population dynamics in a low-temperature (5-18 °C) anaerobic fixed-bed reactor Bioresour. Technol. 2012, 104 (0) 136-143
-
(2012)
Bioresour. Technol.
, vol.104
, Issue.0
, pp. 136-143
-
-
Zhang, D.1
Zhu, W.2
Tang, C.3
Suo, Y.4
Gao, L.5
Yuan, X.6
Wang, X.7
Cui, Z.8
-
22
-
-
0024191542
-
Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese
-
Lovley, D. R.; Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese Appl. Environ. Microbiol. 1988, 54 (6) 1472-1480
-
(1988)
Appl. Environ. Microbiol.
, vol.54
, Issue.6
, pp. 1472-1480
-
-
Lovley, D.R.1
Phillips, E.J.P.2
-
23
-
-
84947724411
-
-
John Wiley & Sons, Inc. Hoboken, NJ
-
Logan, B. E. Microbial Fuel Cells; John Wiley & Sons, Inc.: Hoboken, NJ, 2008; p 300.
-
(2008)
Microbial Fuel Cells
, pp. 300
-
-
Logan, B.E.1
-
24
-
-
84890859222
-
Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells
-
Batlle-Vilanova, P.; Puig, S.; Gonzalez-Olmos, R.; Vilajeliu-Pons, A.; Bañeras, L.; Balaguer, M. D.; Colprim, J. Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells Int. J. Hydrogen Energy 2014, 39 (3) 1297-1305
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, Issue.3
, pp. 1297-1305
-
-
Batlle-Vilanova, P.1
Puig, S.2
Gonzalez-Olmos, R.3
Vilajeliu-Pons, A.4
Bañeras, L.5
Balaguer, M.D.6
Colprim, J.7
-
25
-
-
36749077086
-
Sustainable and efficient biohydrogen production via electrohydrogenesis
-
Cheng, S.; Logan, B. E. Sustainable and efficient biohydrogen production via electrohydrogenesis Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (47) 18871-18873
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, Issue.47
, pp. 18871-18873
-
-
Cheng, S.1
Logan, B.E.2
-
26
-
-
84897987409
-
Identification of new microbial mediators for electromethanogenic reduction of geologically-stored carbon dioxide
-
Fu, Q.; Kobayashi, H.; Kawaguchi, H.; Vilcaez, J.; Sato, K. Identification of new microbial mediators for electromethanogenic reduction of geologically-stored carbon dioxide Energy Procedia 2013, 37 (0) 7006-7013
-
(2013)
Energy Procedia
, vol.37
, Issue.0
, pp. 7006-7013
-
-
Fu, Q.1
Kobayashi, H.2
Kawaguchi, H.3
Vilcaez, J.4
Sato, K.5
-
27
-
-
0016593604
-
Identification of polycyclic aromatic hydrocarbons in semi-reinforcing furnace carbon black
-
Qazi, A. H.; Nau, C. A. Identification of polycyclic aromatic hydrocarbons in semi-reinforcing furnace carbon black Am. Ind. Hyg. Assoc. J. 1975, 36 (3) 187-192
-
(1975)
Am. Ind. Hyg. Assoc. J.
, vol.36
, Issue.3
, pp. 187-192
-
-
Qazi, A.H.1
Nau, C.A.2
-
28
-
-
51249193421
-
On methane fermentation of higher alkanes
-
Muller, F. On methane fermentation of higher alkanes Antonie van Leeuwenhoek 1957, 23 (1) 369-384
-
(1957)
Antonie Van Leeuwenhoek
, vol.23
, Issue.1
, pp. 369-384
-
-
Muller, F.1
-
29
-
-
0023153032
-
Transformation of toluene and benzene by mixed methanogenic cultures
-
Grbić-Galić, D.; Vogel, T. M. Transformation of toluene and benzene by mixed methanogenic cultures Appl. Environ. Microbiol. 1987, 53 (2) 254-260
-
(1987)
Appl. Environ. Microbiol.
, vol.53
, Issue.2
, pp. 254-260
-
-
Grbić-Galić, D.1
Vogel, T.M.2
-
30
-
-
84862327110
-
Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons
-
Berdugo-Clavijo, C.; Dong, X.; Soh, J.; Sensen, C. W.; Gieg, L. M. Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons FEMS Microbiol. Ecol. 2012, 81 (1) 124-133
-
(2012)
FEMS Microbiol. Ecol.
, vol.81
, Issue.1
, pp. 124-133
-
-
Berdugo-Clavijo, C.1
Dong, X.2
Soh, J.3
Sensen, C.W.4
Gieg, L.M.5
-
31
-
-
78650768125
-
Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron and sulfate reducing conditions
-
Siegert, M.; Cichocka, D.; Herrmann, S.; Gründger, F.; Feisthauer, S.; Richnow, H.-H.; Springael, D.; Krüger, M. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron and sulfate reducing conditions FEMS Microbiol. Lett. 2011, 315 (1) 6-16
-
(2011)
FEMS Microbiol. Lett.
, vol.315
, Issue.1
, pp. 6-16
-
-
Siegert, M.1
Cichocka, D.2
Herrmann, S.3
Gründger, F.4
Feisthauer, S.5
Richnow, H.-H.6
Springael, D.7
Krüger, M.8
-
33
-
-
84884715365
-
Syntrophic biodegradation of hydrocarbon contaminants
-
Gieg, L. M.; Fowler, S. J.; Berdugo-Clavijo, C. Syntrophic biodegradation of hydrocarbon contaminants Curr. Opin. Biotechnol. 2014, 27 (0) 21-29
-
(2014)
Curr. Opin. Biotechnol.
, vol.27
, Issue.0
, pp. 21-29
-
-
Gieg, L.M.1
Fowler, S.J.2
Berdugo-Clavijo, C.3
-
34
-
-
77954636313
-
Reversible biological Birch reduction at an extremely low redox potential
-
Kung, J. W.; Baumann, S.; von Bergen, M.; Müller, M.; Hagedoorn, P.-L.; Hagen, W. R.; Boll, M. Reversible biological Birch reduction at an extremely low redox potential J. Am. Chem. Soc. 2010, 132 (28) 9850-9856
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.28
, pp. 9850-9856
-
-
Kung, J.W.1
Baumann, S.2
Von Bergen, M.3
Müller, M.4
Hagedoorn, P.-L.5
Hagen, W.R.6
Boll, M.7
-
35
-
-
84873721435
-
Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells
-
Ribot-Llobet, E.; Nam, J.-Y.; Tokash, J. C.; Guisasola, A.; Logan, B. E. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells Int. J. Hydrogen Energy 2013, 38 (7) 2951-2956
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, Issue.7
, pp. 2951-2956
-
-
Ribot-Llobet, E.1
Nam, J.-Y.2
Tokash, J.C.3
Guisasola, A.4
Logan, B.E.5
-
36
-
-
84867743199
-
Convergent development of anodic bacterial communities in microbial fuel cells
-
Yates, M. D.; Kiely, P. D.; Call, D. F.; Rismani-Yazdi, H.; Bibby, K.; Peccia, J.; Regan, J. M.; Logan, B. E. Convergent development of anodic bacterial communities in microbial fuel cells ISME J. 2012, 6 (11) 2002-2013
-
(2012)
ISME J.
, vol.6
, Issue.11
, pp. 2002-2013
-
-
Yates, M.D.1
Kiely, P.D.2
Call, D.F.3
Rismani-Yazdi, H.4
Bibby, K.5
Peccia, J.6
Regan, J.M.7
Logan, B.E.8
|