메뉴 건너뛰기




Volumn 26, Issue 2, 2015, Pages 263-276

Probabilistic ensemble Fuzzy ARTMAP optimization using hierarchical parallel genetic algorithms

Author keywords

Ensembles; Feature selection; Fuzzy ARTMAP; Parallel genetic algorithm; Plurality voting

Indexed keywords

FEATURE EXTRACTION; FUZZY NEURAL NETWORKS; HEURISTIC ALGORITHMS; MULTIOBJECTIVE OPTIMIZATION; PARALLEL ARCHITECTURES;

EID: 84921699073     PISSN: 09410643     EISSN: 14333058     Source Type: Journal    
DOI: 10.1007/s00521-014-1632-y     Document Type: Article
Times cited : (9)

References (46)
  • 1
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps
    • Carpenter GA, Grossberg S, Marzukon N, Reynolds JH, Rosen DB (1992) Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans Neural Netw 3(5):698–713
    • (1992) IEEE Trans Neural Netw , vol.3 , Issue.5 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Marzukon, N.3    Reynolds, J.H.4    Rosen, D.B.5
  • 2
    • 84894572547 scopus 로고    scopus 로고
    • Reliable fault diagnosis method using ensemble Fuzzy ARTMAP based on improved Bayesian belief method
    • Jin M, Li R, Xu Z, Zhao X (2014) Reliable fault diagnosis method using ensemble Fuzzy ARTMAP based on improved Bayesian belief method. Neurocomputing 133(10):309–316
    • (2014) Neurocomputing , vol.133 , Issue.10 , pp. 309-316
    • Jin, M.1    Li, R.2    Xu, Z.3    Zhao, X.4
  • 3
    • 84878944321 scopus 로고    scopus 로고
    • Comparing the online learning capabilities of Gaussian ARTMAP and Fuzzy ARTMAP for building energy management systems
    • Mokhtar M, Howe J (2013) Comparing the online learning capabilities of Gaussian ARTMAP and Fuzzy ARTMAP for building energy management systems. Expert Syst Appl 40(15):6007–6018
    • (2013) Expert Syst Appl , vol.40 , Issue.15 , pp. 6007-6018
    • Mokhtar, M.1    Howe, J.2
  • 4
    • 84878311696 scopus 로고    scopus 로고
    • An application to transient current signal based induction motor fault diagnosis of Fourier–Bessel expansion and simplified fuzzy ARTMAP
    • Tran VT, AlThobiani F, Ball A, Choi BK (2013) An application to transient current signal based induction motor fault diagnosis of Fourier–Bessel expansion and simplified fuzzy ARTMAP. Expert Syst Appl 40(13):5372–5384
    • (2013) Expert Syst Appl , vol.40 , Issue.13 , pp. 5372-5384
    • Tran, V.T.1    AlThobiani, F.2    Ball, A.3    Choi, B.K.4
  • 5
    • 82255192347 scopus 로고    scopus 로고
    • Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network
    • Liang Z, Xu B, Chi Z, Feng D (2012) Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network. Expert Syst Appl 39(4):4201–4212
    • (2012) Expert Syst Appl , vol.39 , Issue.4 , pp. 4201-4212
    • Liang, Z.1    Xu, B.2    Chi, Z.3    Feng, D.4
  • 6
    • 84897999809 scopus 로고    scopus 로고
    • Evolutionary fuzzy artmap neural networks and their applications to fault detection and diagnosis
    • Tan SC, Lim CP (2010) Evolutionary fuzzy artmap neural networks and their applications to fault detection and diagnosis. Neural Process Lett 31(3):219–242
    • (2010) Neural Process Lett , vol.31 , Issue.3 , pp. 219-242
    • Tan, S.C.1    Lim, C.P.2
  • 7
    • 76849104433 scopus 로고    scopus 로고
    • Biased ART: a neural architecture that shifts attention toward previously disregarded features following an incorrect prediction
    • Carpenter GA, Gaddam SC (2010) Biased ART: a neural architecture that shifts attention toward previously disregarded features following an incorrect prediction. Neural Netw 23(3):435–451
    • (2010) Neural Netw , vol.23 , Issue.3 , pp. 435-451
    • Carpenter, G.A.1    Gaddam, S.C.2
  • 8
    • 0032657707 scopus 로고    scopus 로고
    • An ordering algorithm for pattern presentation in fuzzy ARTMAP that tends to improve generalization performance
    • Dagher I, Georgiopoulos M, Heileman GL, Bebis G (1999) An ordering algorithm for pattern presentation in fuzzy ARTMAP that tends to improve generalization performance. IEEE Trans Neural Netw 10(4):768–778
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.4 , pp. 768-778
    • Dagher, I.1    Georgiopoulos, M.2    Heileman, G.L.3    Bebis, G.4
  • 9
    • 34250753758 scopus 로고    scopus 로고
    • GFAM: a genetic algorithm optimization of fuzzy ARTMAP. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems
    • Al-Daraiseh A, Georgiopoulos M, Anagnostopoulos G, Wu AS, Mollaghasemi M (2006) GFAM: a genetic algorithm optimization of fuzzy ARTMAP. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems, pp 315–322
    • (2006) pp 315–322
    • Al-Daraiseh, A.1    Georgiopoulos, M.2    Anagnostopoulos, G.3    Wu, A.S.4    Mollaghasemi, M.5
  • 10
    • 40649094542 scopus 로고    scopus 로고
    • Particle swarm optimization of fuzzy ARTMAP parameters. In: Proceedings of the 2006 International Joint Conference on Neural Networks
    • Granger E, Henniges P, Oliveira L, Sabourin R (2006) Particle swarm optimization of fuzzy ARTMAP parameters. In: Proceedings of the 2006 International Joint Conference on Neural Networks, pp 2060–2067
    • (2006) pp 2060–2067
    • Granger, E.1    Henniges, P.2    Oliveira, L.3    Sabourin, R.4
  • 11
    • 53749094804 scopus 로고    scopus 로고
    • Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance
    • Palaniappan R, Eswaran C (2009) Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance. Appl Soft Comput 9(1):100–106
    • (2009) Appl Soft Comput , vol.9 , Issue.1 , pp. 100-106
    • Palaniappan, R.1    Eswaran, C.2
  • 12
    • 39749161571 scopus 로고    scopus 로고
    • Agent-based approach to distributed ensemble learning of Fuzzy ARTMAP classifiers
    • Jo GS, (ed), Springer, Berlin:
    • Cervantes L, Lee J, Lee J (2007) Agent-based approach to distributed ensemble learning of Fuzzy ARTMAP classifiers. In: Jo GS et al (eds) Agent and multi-agent systems: technologies and applications. Springer, Berlin, pp 805–814
    • (2007) Agent and multi-agent systems: technologies and applications , pp. 805-814
    • Cervantes, L.1    Lee, J.2    Lee, J.3
  • 13
    • 58849140581 scopus 로고    scopus 로고
    • Using ARTMAP-based ensemble systems designed by three variants of boosting
    • Kurkova-Pohlova V, (ed), Springer, Berlin:
    • de Medeiros Santos A, de Paula Canuto AM (2008) Using ARTMAP-based ensemble systems designed by three variants of boosting. In: Kurkova-Pohlova V et al (eds) Artificial neural networks—ICANN 2008. Springer, Berlin, pp 562–571
    • (2008) Artificial neural networks—ICANN 2008 , pp. 562-571
    • de Medeiros, S.A.1    de Paula Canuto, A.M.2
  • 14
    • 0030198885 scopus 로고    scopus 로고
    • Gaussian ARTMAP: a neural network for fast incremental learning of noisy multidimensional maps
    • Williamson JR (1996) Gaussian ARTMAP: a neural network for fast incremental learning of noisy multidimensional maps. Neural Netw 9(5):881–897
    • (1996) Neural Netw , vol.9 , Issue.5 , pp. 881-897
    • Williamson, J.R.1
  • 16
    • 55749105687 scopus 로고    scopus 로고
    • MO-GART: multiobjective genetic ART architectures. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation
    • Kaylani A, Georgiopoulos M, Mollaghasemi M, Anagnostopoulos GC (2008) MO-GART: multiobjective genetic ART architectures. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp 1425–1432
    • (2008) pp 1425–1432
    • Kaylani, A.1    Georgiopoulos, M.2    Mollaghasemi, M.3    Anagnostopoulos, G.C.4
  • 17
    • 84885862602 scopus 로고    scopus 로고
    • TPPFAM: use of threshold and posterior probability for category reduction in fuzzy ARTMAP
    • Zhang Y, Ji H, Zhang W (2014) TPPFAM: use of threshold and posterior probability for category reduction in fuzzy ARTMAP. Neurocomputing 124:63–71
    • (2014) Neurocomputing , vol.124 , pp. 63-71
    • Zhang, Y.1    Ji, H.2    Zhang, W.3
  • 18
    • 84858148589 scopus 로고    scopus 로고
    • Behavior analysis of neural network ensemble algorithm on a virtual machine cluster
    • Fernández C, Valle C, Saravia F, Allende H (2012) Behavior analysis of neural network ensemble algorithm on a virtual machine cluster. Neural Comput Appl 21(3):535–542
    • (2012) Neural Comput Appl , vol.21 , Issue.3 , pp. 535-542
    • Fernández, C.1    Valle, C.2    Saravia, F.3    Allende, H.4
  • 19
    • 84896754429 scopus 로고    scopus 로고
    • Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models
    • Seera M, Lim CP, Nahavandi S, Loo CK (2014) Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models. Expert Syst Appl 41(10):4891–4903
    • (2014) Expert Syst Appl , vol.41 , Issue.10 , pp. 4891-4903
    • Seera, M.1    Lim, C.P.2    Nahavandi, S.3    Loo, C.K.4
  • 20
    • 84890117327 scopus 로고    scopus 로고
    • A hybrid intelligent system for medical data classification
    • Seera M, Lim CP (2014) A hybrid intelligent system for medical data classification. Expert Syst Appl 41(5):2239–2249
    • (2014) Expert Syst Appl , vol.41 , Issue.5 , pp. 2239-2249
    • Seera, M.1    Lim, C.P.2
  • 22
    • 84873990132 scopus 로고    scopus 로고
    • The hierarchical fair-competition (HFC) model for parallel evolutionary algorithms. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation
    • Hu JJ, Goodman ED (2002) The hierarchical fair-competition (HFC) model for parallel evolutionary algorithms. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, pp 49–54
    • (2002) pp 49–54
    • Hu, J.J.1    Goodman, E.D.2
  • 25
    • 0032596573 scopus 로고    scopus 로고
    • Feature selection for ensembles. In: Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-99)
    • Opitz DW (1999) Feature selection for ensembles. In: Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-99), pp 379–384
    • (1999) pp 379–384
    • Opitz, D.W.1
  • 26
    • 84921699202 scopus 로고    scopus 로고
    • Overfitting and diversity in classification ensembles based on feature selection. In: Computer Science Technical Report TCD-CS-2000-07, Trinity College Dublin
    • Cunningham P (2000) Overfitting and diversity in classification ensembles based on feature selection. In: Computer Science Technical Report TCD-CS-2000-07, Trinity College Dublin, pp 1–8
    • (2000) pp 1–8
    • Cunningham, P.1
  • 27
    • 33845317307 scopus 로고    scopus 로고
    • Feature selection for ensembles using the multi-objective optimization approach
    • Jin Y, (ed), Springer, Berlin:
    • Oliveira LS, Morita M, Sabourin R (2006) Feature selection for ensembles using the multi-objective optimization approach. In: Jin Y (ed) Multi-objective machine learning. Springer, Berlin, pp 49–74
    • (2006) Multi-objective machine learning , pp. 49-74
    • Oliveira, L.S.1    Morita, M.2    Sabourin, R.3
  • 28
    • 84921698983 scopus 로고    scopus 로고
    • A reinforcement-based mechanism to select features for classifiers in ensemble systems
    • Canuto AMP, Vale KMO, Feitosa A (2011) A reinforcement-based mechanism to select features for classifiers in ensemble systems. Int J Comput Inf Syst Ind Manag Appl 3:324–335
    • (2011) Int J Comput Inf Syst Ind Manag Appl , vol.3 , pp. 324-335
    • Canuto, A.M.P.1    Vale, K.M.O.2    Feitosa, A.3
  • 29
    • 0038667775 scopus 로고    scopus 로고
    • Performance analysis of pattern classifier combination by plurality voting
    • Lin X, Yacoub S, Burns J, Simske S (2003) Performance analysis of pattern classifier combination by plurality voting. Pattern Recognit Lett 24(12):1959–1969
    • (2003) Pattern Recognit Lett , vol.24 , Issue.12 , pp. 1959-1969
    • Lin, X.1    Yacoub, S.2    Burns, J.3    Simske, S.4
  • 30
    • 28244463200 scopus 로고    scopus 로고
    • Accurate and reliable diagnosis and classification using probabilistic ensemble simplified fuzzy ARTMAP
    • Loo CK, Rao M (2005) Accurate and reliable diagnosis and classification using probabilistic ensemble simplified fuzzy ARTMAP. IEEE Trans Knowl Data Eng 17(11):1589–1593
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.11 , pp. 1589-1593
    • Loo, C.K.1    Rao, M.2
  • 31
    • 84921700124 scopus 로고    scopus 로고
    • Classification system optimization with multi-objective genetic algorithms. In: Tenth International Workshop on Frontiers in Handwriting Recognition
    • Radtke PV, Sabourin R, Wong T, et al. (2006) Classification system optimization with multi-objective genetic algorithms. In: Tenth International Workshop on Frontiers in Handwriting Recognition
    • (2006) et al
    • Radtke, P.V.1    Sabourin, R.2    Wong, T.3
  • 32
    • 35248819821 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers
    • Cantu-Paz E, (ed), Springer, Berlin:
    • Ishibuchi H, Yamamoto T (2003) Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers. In: Cantu-Paz E et al (eds) Genetic and evolutionary computation GECCO 2003. Springer, Berlin, pp 1077–1088
    • (2003) Genetic and evolutionary computation GECCO 2003 , pp. 1077-1088
    • Ishibuchi, H.1    Yamamoto, T.2
  • 33
    • 84866553125 scopus 로고    scopus 로고
    • Evolutionary fuzzy ARTMAP approach for breast cancer diagnosis
    • Mohamed MA, Hegazy AEF, Badr AA (2011) Evolutionary fuzzy ARTMAP approach for breast cancer diagnosis. Int J Comput Sci Netw Secur 11(4):77–84
    • (2011) Int J Comput Sci Netw Secur , vol.11 , Issue.4 , pp. 77-84
    • Mohamed, M.A.1    Hegazy, A.E.F.2    Badr, A.A.3
  • 34
    • 84855977752 scopus 로고    scopus 로고
    • Multi-objective hybrid evolutionary algorithms for radial basis function neural network design
    • Qasem SN, Shamsuddin SM, Zain AM (2012) Multi-objective hybrid evolutionary algorithms for radial basis function neural network design. Knowledge-Based Syst 27:475–497
    • (2012) Knowledge-Based Syst , vol.27 , pp. 475-497
    • Qasem, S.N.1    Shamsuddin, S.M.2    Zain, A.M.3
  • 35
    • 58349084263 scopus 로고    scopus 로고
    • A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
    • Wu CH, Tzeng GH, Lin RH (2009) A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst Appl 36:4725–4735
    • (2009) Expert Syst Appl , vol.36 , pp. 4725-4735
    • Wu, C.H.1    Tzeng, G.H.2    Lin, R.H.3
  • 36
    • 4344609320 scopus 로고    scopus 로고
    • Frank A, Asuncion A (2011)
    • Frank A, Asuncion A (2011) UCI machine learning repository. http://archive.ics.uci.edu/ml
    • UCI machine learning repository
  • 37
    • 84921701519 scopus 로고    scopus 로고
    • Is combining classifiers better than selecting the best one? In: International Workshop and Conference on Machine Learning
    • Dzeroski S, Zenko B (2002) Is combining classifiers better than selecting the best one? In: International Workshop and Conference on Machine Learning, pp 123–130
    • (2002) pp 123–130
    • Dzeroski, S.1    Zenko, B.2
  • 38
    • 33745807978 scopus 로고    scopus 로고
    • Ensemble pruning using reinforcement learning. In: Advances in artificial intelligence, Springer
    • Partalas I, Tsoumakas G, Katakis I, Vlahavas I (2006) Ensemble pruning using reinforcement learning. In: Advances in artificial intelligence, Springer, pp 301–310
    • (2006) pp 301–310
    • Partalas, I.1    Tsoumakas, G.2    Katakis, I.3    Vlahavas, I.4
  • 39
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Zhang Y, Burer S, Street WN (2006) Ensemble pruning via semi-definite programming. J Mach Learn Res 7:1315–1338
    • (2006) J Mach Learn Res , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 40
    • 55849098057 scopus 로고    scopus 로고
    • Genetic approach for optimizing ensembles of classifiers. In: Proceedings of the Twenty-First International Florida Artificial Intelligence Research Society Conference (FLAIRS) Conference
    • Ordonez FJ, Ledezma A, Sanchis A (2008) Genetic approach for optimizing ensembles of classifiers. In: Proceedings of the Twenty-First International Florida Artificial Intelligence Research Society Conference (FLAIRS) Conference, pp 89–94
    • (2008) pp 89–94
    • Ordonez, F.J.1    Ledezma, A.2    Sanchis, A.3
  • 41
    • 58349119116 scopus 로고    scopus 로고
    • Empirical analysis of support vector machine ensemble classifiers
    • Wang SJ, Mathew A, Chen Y, Xi LF, Ma L, Lee J (2009) Empirical analysis of support vector machine ensemble classifiers. Expert Syst Appl 36(3):6466–6476
    • (2009) Expert Syst Appl , vol.36 , Issue.3 , pp. 6466-6476
    • Wang, S.J.1    Mathew, A.2    Chen, Y.3    Xi, L.F.4    Ma, L.5    Lee, J.6
  • 42
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1(6):80–83
    • (1945) Biometrics , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 43
    • 58649110205 scopus 로고    scopus 로고
    • Overfitting cautious selection of classifier ensembles with genetic algorithms
    • Dos Santos EM, Sabourin R, Maupin P (2009) Overfitting cautious selection of classifier ensembles with genetic algorithms. Inf Fus 10(2):150–162
    • (2009) Inf Fus , vol.10 , Issue.2 , pp. 150-162
    • Dos Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 44
    • 67650434708 scopus 로고    scopus 로고
    • Ensemble member selection using multi-objective optimization
    • Symposium on Computational Intelligence and Data Mining, IEEE:
    • Lofstrom T, Johansson U, Bostrom H (2009) Ensemble member selection using multi-objective optimization. In: IEEE 2009 Symposium on Computational Intelligence and Data Mining, IEEE, pp 245–251
    • (2009) IEEE , vol.2009 , pp. 245-251
    • Lofstrom, T.1    Johansson, U.2    Bostrom, H.3
  • 45
    • 84857996601 scopus 로고    scopus 로고
    • Evolution of heterogeneous ensembles through dynamic particle swarm optimization for video-based face recognition
    • Connolly JF, Granger E, Sabourin R (2012) Evolution of heterogeneous ensembles through dynamic particle swarm optimization for video-based face recognition. Pattern Recognit 45(7):2460–2477
    • (2012) Pattern Recognit , vol.45 , Issue.7 , pp. 2460-2477
    • Connolly, J.F.1    Granger, E.2    Sabourin, R.3
  • 46
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative correlation learning. IEEE Trans Evol Comput 4(4):380–387
    • (2000) IEEE Trans Evol Comput , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.