메뉴 건너뛰기




Volumn 9, Issue 2, 2015, Pages 399-408

A decision support system for diagnosis of neuromuscular disorders using DWT and evolutionary support vector machines

Author keywords

Discrete wavelet transform (DWT); Electromyography (EMG); Evolutionary support vector machines (ESVMs); Genetic algorithms (GAs); Parameter tuning

Indexed keywords

BIOMEDICAL SIGNAL PROCESSING; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DECISION SUPPORT SYSTEMS; DISCRETE WAVELET TRANSFORMS; ELECTROMYOGRAPHY; GENETIC ALGORITHMS; PARAMETER ESTIMATION; PATTERN RECOGNITION; SIGNAL RECONSTRUCTION; TUNING;

EID: 84921699012     PISSN: 18631703     EISSN: 18631711     Source Type: Journal    
DOI: 10.1007/s11760-013-0480-z     Document Type: Article
Times cited : (40)

References (37)
  • 1
    • 84861850248 scopus 로고    scopus 로고
    • Classification of EMG signals using combined features and soft computing techniques
    • Subasi, A.: Classification of EMG signals using combined features and soft computing techniques. Appl. Soft Comput. 12, 2188–2198 (2012)
    • (2012) Appl. Soft Comput. , vol.12 , pp. 2188-2198
    • Subasi, A.1
  • 2
    • 84864128286 scopus 로고    scopus 로고
    • Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines
    • Subasi, A.: Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. Comput. Biol. Med. 42, 806–815 (2012)
    • (2012) Comput. Biol. Med. , vol.42 , pp. 806-815
    • Subasi, A.1
  • 3
    • 0028079951 scopus 로고
    • NNERVE: neural network extraction of repetitive vectors for electromyography. II. Performance analysis
    • Hassoun, M., Wang, C., Spitzer, A.: NNERVE: neural network extraction of repetitive vectors for electromyography. II. Performance analysis. IEEE Trans. Biomed. Eng. 41(11), 1053–1061 (1994)
    • (1994) IEEE Trans. Biomed. Eng. , vol.41 , Issue.11 , pp. 1053-1061
    • Hassoun, M.1    Wang, C.2    Spitzer, A.3
  • 7
    • 0032744849 scopus 로고    scopus 로고
    • Autoregressive and cepstral analyses of motor unit action potentials
    • Pattichis, C.S., Elia, A.G.: Autoregressive and cepstral analyses of motor unit action potentials. Med. Eng. Phys. 21, 405–419 (1999)
    • (1999) Med. Eng. Phys. , vol.21 , pp. 405-419
    • Pattichis, C.S.1    Elia, A.G.2
  • 8
    • 0032711174 scopus 로고    scopus 로고
    • Time-scale analysis of motor unit action potentials
    • Pattichis, C.S., Pattichis, M.S.: Time-scale analysis of motor unit action potentials. IEEE Trans. Biomed. Eng. 46(11), 1320–1329 (1999)
    • (1999) IEEE Trans. Biomed. Eng. , vol.46 , Issue.11 , pp. 1320-1329
    • Pattichis, C.S.1    Pattichis, M.S.2
  • 9
    • 85019193183 scopus 로고    scopus 로고
    • Computational Intelligence in Biomedical Engineering. Taylor & Francis Group, LLC., CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton
    • Begg, R., Daniel, T., Lai, H., Palaniswami, M.: Computational Intelligence in Biomedical Engineering. Taylor & Francis Group, LLC., CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 (2008)
    • (2008) FL , pp. 32742-33487
    • Begg, R.1    Daniel, T.2    Lai, H.3    Palaniswami, M.4
  • 10
    • 33747156423 scopus 로고    scopus 로고
    • Classification of EMG signals using wavelet neural network
    • Subasi, A., Yilmaz, M., Ozcalik, H.R.: Classification of EMG signals using wavelet neural network. J. Neurosci. Meth. 156, 360–367 (2006)
    • (2006) J. Neurosci. Meth. , vol.156 , pp. 360-367
    • Subasi, A.1    Yilmaz, M.2    Ozcalik, H.R.3
  • 11
    • 77956056202 scopus 로고    scopus 로고
    • Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks
    • Subasi, A., Kiymik, M.K.: Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks. J. Med. Sys. 34(4), 777–785 (2010)
    • (2010) J. Med. Sys. , vol.34 , Issue.4 , pp. 777-785
    • Subasi, A.1    Kiymik, M.K.2
  • 14
    • 0043166415 scopus 로고    scopus 로고
    • Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines
    • Lu, C., Van Gestel, T., Suykens, J.A.K., Van Huffel, S., Vergote, I., Timmerman, D.: Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artif. Intell. Med. 28, 281–306 (2003)
    • (2003) Artif. Intell. Med. , vol.28 , pp. 281-306
    • Lu, C.1    Van Gestel, T.2    Suykens, J.A.K.3    Van Huffel, S.4    Vergote, I.5    Timmerman, D.6
  • 16
    • 33750233846 scopus 로고    scopus 로고
    • Evolutionary learning with kernels: a generic solution for large margin problems
    • Washington: USA
    • Mierswa, I.: Evolutionary learning with kernels: a generic solution for large margin problems. In: Proceedings of the GECCO’06, pp. 1553–1560. Washington, USA (2006)
    • (2006) Proceedings of the GECCO’06 , pp. 1553-1560
    • Mierswa, I.1
  • 17
    • 11844263947 scopus 로고    scopus 로고
    • Intelligent evolutionary algorithms for large parameter optimization problems
    • Ho, S.Y., Shu, L.S., Chen, J.H.: Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Trans. Evolut. Comput. 8(6), 522–541 (2004)
    • (2004) IEEE Trans. Evolut. Comput. , vol.8 , Issue.6 , pp. 522-541
    • Ho, S.Y.1    Shu, L.S.2    Chen, J.H.3
  • 18
    • 34548379115 scopus 로고    scopus 로고
    • ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data
    • Huang, H.-L., Chang, F.-L.: ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data. BioSystems 90, 516–528 (2007)
    • (2007) BioSystems , vol.90 , pp. 516-528
    • Huang, H.-L.1    Chang, F.-L.2
  • 19
    • 0000105814 scopus 로고
    • Introduction to the special issue on wavelet transforms and multiresolution signal analysis
    • Daubechies, I., Mallat, S., Willsky, A.S.: Introduction to the special issue on wavelet transforms and multiresolution signal analysis. IEEE Trans. Inf. Theory 38, 529–532 (1992)
    • (1992) IEEE Trans. Inf. Theory , vol.38 , pp. 529-532
    • Daubechies, I.1    Mallat, S.2    Willsky, A.S.3
  • 20
    • 0026922952 scopus 로고
    • Wavelets and filter banks: theory and design
    • Vetterli, M., Herley, C.: Wavelets and filter banks: theory and design. IEEE Trans. Signal Process. 40, 2207–2232 (1992)
    • (1992) IEEE Trans. Signal Process. , vol.40 , pp. 2207-2232
    • Vetterli, M.1    Herley, C.2
  • 23
    • 85032751591 scopus 로고
    • Linear and quadratic time-frequency signal representations
    • Hlawatsch, F., Bourdeaux-Bartels, G.F.: Linear and quadratic time-frequency signal representations. IEEE Signal Proc. Mag. 4, 21–67 (1992)
    • (1992) IEEE Signal Proc. Mag. , vol.4 , pp. 21-67
    • Hlawatsch, F.1    Bourdeaux-Bartels, G.F.2
  • 24
    • 0013649396 scopus 로고    scopus 로고
    • Wavelet (time-scale) analysis in biomedical signal processing
    • Bronzino JD, (ed), CRC Press LLC, Boca Raton:
    • Thakor, N.V., Gramatikov, B., Sherman, D.: Wavelet (time-scale) analysis in biomedical signal processing. In: Bronzino, J.D. (ed.) The Biomedical Engineering Handbook. CRC Press LLC, Boca Raton (2000)
    • (2000) The Biomedical Engineering Handbook
    • Thakor, N.V.1    Gramatikov, B.2    Sherman, D.3
  • 25
    • 0031139676 scopus 로고    scopus 로고
    • Wavelet applications in medicine
    • Akay, M.: Wavelet applications in medicine. IEEE Spectr. 34(5), 50–56 (1997)
    • (1997) IEEE Spectr. , vol.34 , Issue.5 , pp. 50-56
    • Akay, M.1
  • 26
    • 17844371713 scopus 로고    scopus 로고
    • Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients
    • Subasi, A.: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Syst. Appl. 28, 701–711 (2005)
    • (2005) Expert Syst. Appl. , vol.28 , pp. 701-711
    • Subasi, A.1
  • 27
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084–1093 (2007)
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 35
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems
    • Lorena, A.C., de Carvalho, A.C.P.L.F.: Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 71, 3326–3334 (2008)
    • (2008) Neurocomputing , vol.71 , pp. 3326-3334
    • Lorena, A.C.1    de Carvalho, A.C.P.L.F.2
  • 36
    • 33746924828 scopus 로고    scopus 로고
    • Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response
    • Zhang, R., McAllister, G., Scotney, B., McClean, S., Houston, G.: Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response. IEEE Trans. Info. Tech. Biomed. 10(3), 458–467 (2006)
    • (2006) IEEE Trans. Info. Tech. Biomed. , vol.10 , Issue.3 , pp. 458-467
    • Zhang, R.1    McAllister, G.2    Scotney, B.3    McClean, S.4    Houston, G.5
  • 37


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.