-
1
-
-
0037592480
-
Evolution strategies: A comprehensive introduction
-
H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive introduction. Journal Natural Computing, 1(1):2-52, 2002.
-
(2002)
Journal Natural Computing
, vol.1
, Issue.1
, pp. 2-52
-
-
Beyer, H.-G.1
Schwefel, H.-P.2
-
2
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.1
-
3
-
-
8644250489
-
Fuzzy sigmoid kernel for support vector classifiers
-
G. Camps-Valls, J. Martin-Guerrero, J. Rojo-Alvarez, and E. Soria-Olivas. Fuzzy sigmoid kernel for support vector classifiers. Neurocomputing, 62:501-506, 2004.
-
(2004)
Neurocomputing
, vol.62
, pp. 501-506
-
-
Camps-Valls, G.1
Martin-Guerrero, J.2
Rojo-Alvarez, J.3
Soria-Olivas, E.4
-
5
-
-
15544375700
-
Yale: Yet another learning environment - Tutorial
-
Collaborative Research Center 531, University of Dortmund, Dortmund, Germany
-
S. Fischer, R. Klinkenberg, I. Mierswa, and O. Ritthoff. Yale: Yet Another Learning Environment - Tutorial. Technical Report CI-136/02, Collaborative Research Center 531, University of Dortmund, Dortmund, Germany, 2002.
-
(2002)
Technical Report
, vol.CI-136-02
-
-
Fischer, S.1
Klinkenberg, R.2
Mierswa, I.3
Ritthoff, O.4
-
7
-
-
33749863915
-
Feature selection for support vector machines using genetic algorithms
-
H. Frp̈hlich, O. Chapelle, and B. Schölkopf. Feature selection for support vector machines using genetic algorithms. International Journal on Artificial Intelligence Tools, 13(4):791-800, 2004.
-
(2004)
International Journal on Artificial Intelligence Tools
, vol.13
, Issue.4
, pp. 791-800
-
-
Frp̈hlich, H.1
Chapelle, O.2
Schölkopf, B.3
-
9
-
-
0003684449
-
-
Springer Series in Statistics. Springer
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
10
-
-
29144521785
-
The genetic kernel support vector machine: Description and evaluation
-
T. Howley and M. Madden. The genetic kernel support vector machine: Description and evaluation. Artificial Intelligence Review, 2005.
-
(2005)
Artificial Intelligence Review
-
-
Howley, T.1
Madden, M.2
-
12
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, and A. Smola, editors, chapter 11. MIT Press, Cambridge, MA
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 11. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
17
-
-
14344254996
-
Learning with non-positive kernels
-
C. Ong, X. Mary, S. Canu, and A. J. Smola. Learning with non-positive kernels. In Proc. of the 21st International Conference on Machine Learning (ICML), pages 639-646, 2004.
-
(2004)
Proc. of the 21st International Conference on Machine Learning (ICML)
, pp. 639-646
-
-
Ong, C.1
Mary, X.2
Canu, S.3
Smola, A.J.4
-
19
-
-
24344442704
-
Asynchronous parallel evolutionary model selection for support vector machines
-
T. Runarsson and S. Sigurdsson. Asynchronous parallel evolutionary model selection for support vector machines. Neural Information Processing, 3(3):59-67, 2004.
-
(2004)
Neural Information Processing
, vol.3
, Issue.3
, pp. 59-67
-
-
Runarsson, T.1
Sigurdsson, S.2
-
20
-
-
0141912837
-
-
Universität Dortmund, Lehrstuhl Informatik VIII
-
S. Rüping. mySVM Manual. Universität Dortmund, Lehrstuhl Informatik VIII, 2000. http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.
-
(2000)
MySVM Manual
-
-
Rüping, S.1
-
25
-
-
32444447553
-
On the impact of objective function transformations on evolutionary and black-box algorithms
-
T. Storch. On the impact of objective function transformations on evolutionary and black-box algorithms. In Proc. of the Genetic and Evolutionary Computation Conference (GECCO), pages 833-840, 2005.
-
(2005)
Proc. of the Genetic and Evolutionary Computation Conference (GECCO)
, pp. 833-840
-
-
Storch, T.1
-
28
-
-
0000864140
-
The necessary and sufficient conditions for consistency in the empirical risk minimization method
-
V. Vapnik and A. Chervonenkis. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3):283-305, 1991.
-
(1991)
Pattern Recognition and Image Analysis
, vol.1
, Issue.3
, pp. 283-305
-
-
Vapnik, V.1
Chervonenkis, A.2
|